Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2005, Volume 10, Issue 1, Pages 81–93
DOI: https://doi.org/10.1070/RD2005v010n01ABEH000302
(Mi rcd698)
 

This article is cited in 8 scientific papers (total in 8 papers)

On the Steklov case in rigid body dynamics

A. P. Markeev

Institute of Problems in Mechanics, Russian Academy of Sciences, 101, Vernadsky av., 119526 Moscow, Russia
Citations (8)
Abstract: We study the motion of a heavy rigid body with a fixed point. The center of mass is located on mean or minor axis of the ellipsoid of inertia, with the moments of inertia satisfying the conditions B>A>2C or 2B>A>B>C, A>2C as well as the usual triangle inequalities. Under these circumstances the Euler–Poisson equations have the particular periodic solutions mentioned by V. A. Steklov. We examine the problem of the orbital stability of the periodic motions of a rigid body, which correspond to the Steklov solutions.
Keywords: rigid body dynamics, Euler–Poisson equations, Steklov solutions, orbital stability of the periodic motions.
Received: 21.09.2004
Accepted: 26.01.2005
Bibliographic databases:
Document Type: Article
MSC: 70E17, 70E50
Language: English
Citation: A. P. Markeev, “On the Steklov case in rigid body dynamics”, Regul. Chaotic Dyn., 10:1 (2005), 81–93
Citation in format AMSBIB
\Bibitem{Mar05}
\by A. P. Markeev
\paper On the Steklov case in rigid body dynamics
\jour Regul. Chaotic Dyn.
\yr 2005
\vol 10
\issue 1
\pages 81--93
\mathnet{http://mi.mathnet.ru/rcd698}
\crossref{https://doi.org/10.1070/RD2005v010n01ABEH000302}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2136832}
\zmath{https://zbmath.org/?q=an:1120.70007}
Linking options:
  • https://www.mathnet.ru/eng/rcd698
  • https://www.mathnet.ru/eng/rcd/v10/i1/p81
  • This publication is cited in the following 8 articles:
    1. Víctor Lanchares, Manuel Iñarrea, Ana Isabel Pascual, Antonio Elipe, “Stability Conditions for Permanent Rotations of a Heavy Gyrostat with Two Constant Rotors”, Mathematics, 10:11 (2022), 1882  crossref
    2. Ji-Huan He, T.S. Amer, H.F. El-Kafly, A.A. Galal, “Modelling of the rotational motion of 6-DOF rigid body according to the Bobylev-Steklov conditions”, Results in Physics, 35 (2022), 105391  crossref
    3. Borisov A. Mamaev I., “Rigid Body Dynamics”, Rigid Body Dynamics, de Gruyter Studies in Mathematical Physics, 52, Walter de Gruyter Gmbh, 2019, 1–520  mathscinet  isi
    4. Anatoly P. Markeev, “On the Stability of Periodic Motions of an Autonomous Hamiltonian System in a Critical Case of the Fourth-order Resonance”, Regul. Chaotic Dyn., 22:7 (2017), 773–781  mathnet  crossref
    5. Manuel Iñarrea, Víctor Lanchares, Ana I. Pascual, Antonio Elipe, “On the Stability of a Class of Permanent Rotations of a Heavy Asymmetric Gyrostat”, Regul. Chaotic Dyn., 22:7 (2017), 824–839  mathnet  crossref
    6. H. M. Yehia, S. Z. Hassan, M. E. Shaheen, “On the orbital stability of the motion of a rigid body in the case of Bobylev–Steklov”, Nonlinear Dyn, 80:3 (2015), 1173  crossref
    7. Hamad M. Yehia, E. G. El-Hadidy, “On the Orbital Stability of Pendulum-like Vibrations of a Rigid Body Carrying a Rotor”, Regul. Chaotic Dyn., 18:5 (2013), 539–552  mathnet  crossref  mathscinet  zmath
    8. Andrzej J. Maciejewski, Maria Przybylska, “Integrable Variational Equations of Non-integrable Systems”, Regul. Chaotic Dyn., 17:3 (2012), 337–358  mathnet  crossref  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:132
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025