Loading [MathJax]/jax/output/CommonHTML/jax.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2005, Volume 10, Issue 1, Pages 1–14
DOI: https://doi.org/10.1070/RD2005v010n01ABEH000295
(Mi rcd691)
 

This article is cited in 38 scientific papers (total in 38 papers)

Poisson brackets for the dynamically interacting system of a 2D rigid cylinder and N point vortices: the case of arbitrary smooth cylinder shapes

B. N. Shashikanth

Mechanical Engineering Department, MSC 3450, PO Box 30001, New Mexico State University, Las Cruces, NM 88003, USA
Citations (38)
Abstract: This paper basically extends the work of Shashikanth, Marsden, Burdick and Kelly [17] by showing that the Hamiltonian (Poisson bracket) structure of the dynamically interacting system of a 2-D rigid circular cylinder and N point vortices, when the vortex strengths sum to zero and the circulation around the cylinder is zero, also holds when the cylinder has arbitrary (smooth) shape. This extension is a consequence of a reciprocity relation, obtainable by an application of a classical Green's formula, that holds for this problem. Moreover, even when the vortex strengths do not sum to zero but with the circulation around the cylinder still zero, it is shown that there is a Poisson bracket for the system which differs from the previous bracket by the inclusion of a 2-cocycle term. Finally, comparisons are made to the works of Borisov, Mamaev and Ramodanov [15], [16], [5], [4].
Keywords: point vortices, rigid body, Hamiltonian, Poisson brackets, reciprocity.
Received: 02.01.2005
Accepted: 15.02.2005
Bibliographic databases:
Document Type: Article
Language: English
Citation: B. N. Shashikanth, “Poisson brackets for the dynamically interacting system of a 2D rigid cylinder and N point vortices: the case of arbitrary smooth cylinder shapes”, Regul. Chaotic Dyn., 10:1 (2005), 1–14
Citation in format AMSBIB
\Bibitem{Sha05}
\by B.~N.~Shashikanth
\paper Poisson brackets for the dynamically interacting system of a 2D rigid cylinder and $N$ point vortices: the case of arbitrary smooth cylinder shapes
\jour Regul. Chaotic Dyn.
\yr 2005
\vol 10
\issue 1
\pages 1--14
\mathnet{http://mi.mathnet.ru/rcd691}
\crossref{https://doi.org/10.1070/RD2005v010n01ABEH000295}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2136825}
\zmath{https://zbmath.org/?q=an:1128.76315}
Linking options:
  • https://www.mathnet.ru/eng/rcd691
  • https://www.mathnet.ru/eng/rcd/v10/i1/p1
  • This publication is cited in the following 38 articles:
    1. Sergey M. Ramodanov, Sergey V. Sokolov, “Dynamics of a Circular Cylinder and Two Point Vortices in a Perfect Fluid”, Regul. Chaotic Dyn., 26:6 (2021), 675–691  mathnet  crossref
    2. Taha H.E. Olea L.P. Khalifa N. Gonzalez C. Rezaei A.S., “Geometric-Control Formulation and Averaging Analysis of the Unsteady Aerodynamics of a Wing With Oscillatory Controls”, J. Fluid Mech., 928 (2021), A30  crossref  mathscinet  isi  scopus
    3. Mamaev I.S. Bizyaev I.A., “Dynamics of An Unbalanced Circular Foil and Point Vortices in An Ideal Fluid”, Phys. Fluids, 33:8 (2021), 087119  crossref  mathscinet  isi  scopus
    4. Terze Z., Pandza V., Andric M., Zlatar D., “Lie Group Dynamics of Reduced Multibody-Fluid Systems”, Math. Mech. Complex Syst., 9:2 (2021), 167–177  crossref  mathscinet  isi  scopus
    5. Banavara N. Shashikanth, Dynamically Coupled Rigid Body-Fluid Flow Systems, 2021, 43  crossref
    6. Banavara N. Shashikanth, Dynamically Coupled Rigid Body-Fluid Flow Systems, 2021, 1  crossref
    7. Shashikanth B.N., “Poisson Brackets For the Dynamically Coupled System of a Free Boundary and a Neutrally Buoyant Rigid Body in a Body-Fixed Frame”, J. Geom. Mech., 12:1 (2020), 25–52  crossref  mathscinet  zmath  isi  scopus
    8. Ivan S. Mamaev, Ivan A. Bizyaev, 2020 International Conference Nonlinearity, Information and Robotics (NIR), 2020, 1  crossref
    9. Pollard B. Fedonyuk V. Tallapragada Ph., “Swimming on Limit Cycles With Nonholonomic Constraints”, Nonlinear Dyn., 97:4 (2019), 2453–2468  crossref  zmath  isi  scopus
    10. Borisov A. Mamaev I., “Rigid Body Dynamics”, Rigid Body Dynamics, de Gruyter Studies in Mathematical Physics, 52, Walter de Gruyter Gmbh, 2019, 1–520  mathscinet  isi
    11. A. A. Kilin, A. I. Klenov, V. A. Tenenev, “Upravlenie dvizheniem tela s pomoschyu vnutrennikh mass v vyazkoi zhidkosti”, Kompyuternye issledovaniya i modelirovanie, 10:4 (2018), 445–460  mathnet  crossref
    12. Phanindra Tallapragada, Scott David Kelly, “Integrability of Velocity Constraints Modeling Vortex Shedding in Ideal Fluids”, Journal of Computational and Nonlinear Dynamics, 12:2 (2017)  crossref
    13. E. V. Vetchanin, A. A. Kilin, “Controlled motion of a rigid body with internal mechanisms in an ideal incompressible fluid”, Proc. Steklov Inst. Math., 295 (2016), 302–332  mathnet  crossref  crossref  mathscinet  isi  elib
    14. Banavara N. Shashikanth, “Kirchhoff's equations of motion via a constrained Zakharov system”, JGM, 8:4 (2016), 461  crossref
    15. S. V. Sokolov, I. S. Koltsov, “Khaoticheskoe rasseyanie tochechnogo vikhrya krugovym tsilindricheskim tverdym telom, dvizhuschimsya v pole tyazhesti”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 25:2 (2015), 184–196  mathnet  elib
    16. P. Tallapragada, S.D. Kelly, “Self-propulsion of free solid bodies with internal rotors via localized singular vortex shedding in planar ideal fluids”, Eur. Phys. J. Spec. Top., 224:17-18 (2015), 3185  crossref
    17. Phanindra Tallapragada, 2015 American Control Conference (ACC), 2015, 657  crossref
    18. Steffen Weißmann, “Hamiltonian Dynamics of Several Rigid Bodies Interacting with Point Vortices”, J Nonlinear Sci, 24:2 (2014), 359  crossref
    19. Phanindra Tallapragada, Scott David Kelly, “Dynamics and Self-Propulsion of a Spherical Body Shedding Coaxial Vortex Rings in an Ideal Fluid”, Regul. Chaotic Dyn., 18:1-2 (2013), 21–32  mathnet  crossref  mathscinet  zmath
    20. Phanindra Tallapragada, Scott David Kelly, 2013 American Control Conference, 2013, 615  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:138
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025