Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2006, Volume 11, Issue 3, Pages 363–369
DOI: https://doi.org/10.1070/RD2006v011n03ABEH000359
(Mi rcd682)
 

This article is cited in 1 scientific paper (total in 1 paper)

Geometry and real-analytic integrability

L. T. Butler

School of Mathematics, The University of Edinburgh, 6214 James Clerk Maxwell Building, Edinburgh, UK, EH9 3JZ
Citations (1)
Abstract: This note constructs a compact, real-analytic, riemannian 4-manifold ($\Sigma, g$) with the properties that: (1) its geodesic flow is completely integrable with smooth but not real-analytic integrals; (2) $\Sigma$ is diffeomorphic to $\mathbf{T}^2 \times \mathbf{S}^2$; and (3) the limit set of the geodesic flow on the universal cover is dense. This shows there are obstructions to real-analytic integrability beyond the topology of the configuration space.
Keywords: geodesic flows, integrable systems, momentum map, real-analytic integrability.
Received: 20.03.2006
Accepted: 29.06.2006
Bibliographic databases:
Document Type: Article
Language: English
Citation: L. T. Butler, “Geometry and real-analytic integrability”, Regul. Chaotic Dyn., 11:3 (2006), 363–369
Citation in format AMSBIB
\Bibitem{But06}
\by L.~T.~Butler
\paper Geometry and real-analytic integrability
\jour Regul. Chaotic Dyn.
\yr 2006
\vol 11
\issue 3
\pages 363--369
\mathnet{http://mi.mathnet.ru/rcd682}
\crossref{https://doi.org/10.1070/RD2006v011n03ABEH000359}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2286566}
\zmath{https://zbmath.org/?q=an:1164.37337}
Linking options:
  • https://www.mathnet.ru/eng/rcd682
  • https://www.mathnet.ru/eng/rcd/v11/i3/p363
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024