Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2006, Volume 11, Issue 2, Pages 247–258
DOI: https://doi.org/10.1070/RD2006v011n02ABEH000348
(Mi rcd671)
 

This article is cited in 11 scientific papers (total in 11 papers)

On the 70th birthday of L.P. Shilnikov

Hard bifurcations in dynamical systems with bounded random perturbations

A. J. Homburga, T. Youngb

a KdV Institute for Mathematics, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands
b Department of Mathematics, Ohio University, Athens, OH 45701
Citations (11)
Abstract: We study bifurcations in dynamical systems with bounded random perturbations. Such systems, which arise quite naturally, have been nearly ignored in the literature, despite a rich body of work on systems with unbounded, usually normally distributed, noise. In systems with bounded random perturbations, new kinds of bifurcations that we call 'hard' may happen and in fact do occur in many situations when the unperturbed deterministic systems experience elementary, codimension-one bifurcations such as saddle-node and homoclinic bifurcations. A hard bifurcation is defined as discontinuous change in the density function or support of a stationary measure of the system.
Keywords: bifurcations, random perturbations.
Received: 03.10.2005
Accepted: 11.12.2005
Bibliographic databases:
Document Type: Article
MSC: 34F05, 37H20
Language: English
Citation: A. J. Homburg, T. Young, “Hard bifurcations in dynamical systems with bounded random perturbations”, Regul. Chaotic Dyn., 11:2 (2006), 247–258
Citation in format AMSBIB
\Bibitem{HomYou06}
\by A. J. Homburg, T.~Young
\paper Hard bifurcations in dynamical systems with bounded random perturbations
\jour Regul. Chaotic Dyn.
\yr 2006
\vol 11
\issue 2
\pages 247--258
\mathnet{http://mi.mathnet.ru/rcd671}
\crossref{https://doi.org/10.1070/RD2006v011n02ABEH000348}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2245080}
\zmath{https://zbmath.org/?q=an:1164.34402}
Linking options:
  • https://www.mathnet.ru/eng/rcd671
  • https://www.mathnet.ru/eng/rcd/v11/i2/p247
  • This publication is cited in the following 11 articles:
    1. Alberto d'Onofrio, Giulio Caravagna, Sebastiano de Franciscis, “Bounded noise induced first-order phase transitions in a baseline non-spatial model of gene transcription”, Physica A: Statistical Mechanics and its Applications, 492 (2018), 2056  crossref
    2. Martin Rasmussen, Janosch Rieger, Kevin N. Webster, “Approximation of reachable sets using optimal control and support vector machines”, Journal of Computational and Applied Mathematics, 311 (2017), 68  crossref
    3. Grzegorz Guzik, “Minimal invariant closed sets of set-valued semiflows”, Journal of Mathematical Analysis and Applications, 449:1 (2017), 382  crossref
    4. Xue Gong, Gregory Moses, Alexander B. Neiman, Todd Young, “Noise-induced dispersion and breakup of clusters in cell cycle dynamics”, Journal of Theoretical Biology, 355 (2014), 160  crossref
    5. Ale Jan Homburg, Todd R. Young, Masoumeh Gharaei, Modeling and Simulation in Science, Engineering and Technology, Bounded Noises in Physics, Biology, and Engineering, 2013, 133  crossref
    6. Ryan T. Botts, Ale Jan Homburg, Todd R. Young, “The Hopf bifurcation with bounded noise”, Discrete & Continuous Dynamical Systems - A, 32:8 (2012), 2997  crossref
    7. V. Anagnostopoulou, T. Jäger, “Nonautonomous saddle-node bifurcations: Random and deterministic forcing”, Journal of Differential Equations, 253:2 (2012), 379  crossref
    8. Erik M. Boczko, Tomas Gedeon, Chris C. Stowers, Todd R. Young, “ODE, RDE and SDE models of cell cycle dynamics and clustering in yeast”, Journal of Biological Dynamics, 4:4 (2010), 328  crossref
    9. Jacques Demongeot, Jules Waku, “Application of interval iterations to the entrainment problem in respiratory physiology”, Phil. Trans. R. Soc. A., 367:1908 (2009), 4717  crossref
    10. C.G.H. Diks, F.O.O. Wagener, “A bifurcation theory for a class of discrete time Markovian stochastic systems”, Physica D: Nonlinear Phenomena, 237:24 (2008), 3297  crossref
    11. HICHAM ZMARROU, ALE JAN HOMBURG, “Bifurcations of stationary measures of random diffeomorphisms”, Ergod. Th. Dynam. Sys., 27:5 (2007), 1651  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:108
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025