Abstract:
The Stanley decomposition of the joint covariants of three quadratics is computed using a new transvectant algorithm and computer algebra. This is sufficient to compute the general form of the normal form with respect to a nilpotent with three 3-dimensional irreducible blocks.
Keywords:
joint covariant, quadratic, nilpotent normal form.
\Bibitem{San07}
\by Jan A. Sanders
\paper Stanley Decomposition of the Joint Covariants of Three Quadratics
\jour Regul. Chaotic Dyn.
\yr 2007
\vol 12
\issue 6
\pages 732--735
\mathnet{http://mi.mathnet.ru/rcd651}
\crossref{https://doi.org/10.1134/S1560354707060135}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2373169}
\zmath{https://zbmath.org/?q=an:1229.13008}
Linking options:
https://www.mathnet.ru/eng/rcd651
https://www.mathnet.ru/eng/rcd/v12/i6/p732
This publication is cited in the following 5 articles:
Bakhtawar Shaukat, Muhammad Ishaq, Ahtsham Ul Haq, “Algebraic invariants of edge ideals of some circulant graphs”, MATH, 9:1 (2024), 868
Murdock J., Murdock T., “Block Stanley Decompositions II. Greedy Algorithms, Applications, and Open Problems”, Bull. Iran Math. Soc., 45:1 (2019), 127–172
Bogdan Ichim, Lukas Katthän, Julio José Moyano-Fernández, “Stanley depth and the lcm-lattice”, Journal of Combinatorial Theory, Series A, 150 (2017), 295
James Murdock, “Box products in nilpotent normal form theory: The factoring method”, Journal of Differential Equations, 260:2 (2016), 1010
James Murdock, Theodore Murdock, “Block Stanley decompositions I. Elementary and gnomon decompositions”, Journal of Pure and Applied Algebra, 219:6 (2015), 2189