Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2007, Volume 12, Issue 5, Pages 521–530
DOI: https://doi.org/10.1134/S156035470705005X
(Mi rcd636)
 

On the 150th anniversary of A.M.Lyapunov

Resonances and $O$-curves in Hamiltonian systems

P. Butta, P. Negrini

Dipartimento di Matematica, SAPIENZA Universit\'{a} di Roma, P.le Aldo Moro 2, 00185, Roma, Italy
Abstract: We investigate the problem of the existence of trajectories asymptotic to elliptic equilibria of Hamiltonian systems in the presence of resonances.
Keywords: Hamiltonian systems, resonances.
Received: 21.08.2007
Accepted: 02.09.2007
Bibliographic databases:
Document Type: Personalia
MSC: 70H14, 37J40
Language: English
Citation: P. Butta, P. Negrini, “Resonances and $O$-curves in Hamiltonian systems”, Regul. Chaotic Dyn., 12:5 (2007), 521–530
Citation in format AMSBIB
\Bibitem{ButNeg07}
\by P.~Butta, P.~Negrini
\paper Resonances and $O$-curves in Hamiltonian systems
\jour Regul. Chaotic Dyn.
\yr 2007
\vol 12
\issue 5
\pages 521--530
\mathnet{http://mi.mathnet.ru/rcd636}
\crossref{https://doi.org/10.1134/S156035470705005X}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2350337}
\zmath{https://zbmath.org/?q=an:1229.70059}
Linking options:
  • https://www.mathnet.ru/eng/rcd636
  • https://www.mathnet.ru/eng/rcd/v12/i5/p521
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024