Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2007, Volume 12, Issue 1, Pages 68–80
DOI: https://doi.org/10.1134/S1560354707010066
(Mi rcd612)
 

This article is cited in 2 scientific papers (total in 2 papers)

Interaction between Kirchhoff vortices and point vortices in an ideal fluid

A. V. Borisov, I. S. Mamaev

Institute of Computer Science, Udmurt State University, Universitetskaya ul. 1, 426034 Izhevsk, Russia
Citations (2)
Abstract: We consider the interaction of two vortex patches (elliptic Kirchhoff vortices) which move in an unbounded volume of an ideal incompressible fluid. A moment second-order model is used to describe the interaction. The case of integrability of a Kirchhoff vortex and a point vortex is qualitatively analyzed. A new case of integrability of two Kirchhoff vortices is found by the variable separation method . A reduced form of equations for two Kirchhoff vortices is proposed and used to analyze their regular and chaotic behavior.
Keywords: vortex patch, point vortex, integrability.
Received: 01.03.2005
Accepted: 14.01.2006
Bibliographic databases:
Document Type: Article
MSC: 37N05, 76M23
Language: English
Citation: A. V. Borisov, I. S. Mamaev, “Interaction between Kirchhoff vortices and point vortices in an ideal fluid”, Regul. Chaotic Dyn., 12:1 (2007), 68–80
Citation in format AMSBIB
\Bibitem{BorMam07}
\by A.~V.~Borisov, I.~S.~Mamaev
\paper Interaction between Kirchhoff vortices and point vortices in an ideal fluid
\jour Regul. Chaotic Dyn.
\yr 2007
\vol 12
\issue 1
\pages 68--80
\mathnet{http://mi.mathnet.ru/rcd612}
\crossref{https://doi.org/10.1134/S1560354707010066}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2350297}
\zmath{https://zbmath.org/?q=an:1229.37108}
Linking options:
  • https://www.mathnet.ru/eng/rcd612
  • https://www.mathnet.ru/eng/rcd/v12/i1/p68
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025