Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2007, Volume 12, Issue 1, Pages 1–11
DOI: https://doi.org/10.1134/S1560354707010017
(Mi rcd607)
 

This article is cited in 5 scientific papers (total in 5 papers)

On a Class of Non-Smooth Dynamical Systems: a Sufficient Condition for Smooth Versus Non-Smooth Solutions

M.-F. Danca

Department of Mathematics, Tehnofrig Technical College, Cluj-Napoca 3400, Romania
Citations (5)
Abstract: In this paper we present a possible classification of the elements of a class of dynamical systems, whose underlying mathematical models contain non-smooth components. For this purpose a sufficient condition is introduced. To illustrate and motivate this classification, three nontrivial and realistic examples are considered.
Keywords: non-smooth dynamical systems, Filipov systems, differential inclusions.
Received: 19.06.2006
Accepted: 24.10.2006
Bibliographic databases:
Document Type: Article
MSC: 74H65, 65P20, 37D45
Language: English
Citation: M.-F. Danca, “On a Class of Non-Smooth Dynamical Systems: a Sufficient Condition for Smooth Versus Non-Smooth Solutions”, Regul. Chaotic Dyn., 12:1 (2007), 1–11
Citation in format AMSBIB
\Bibitem{Dan07}
\by M.-F.~Danca
\paper On a Class of Non-Smooth Dynamical Systems: a Sufficient Condition for Smooth Versus Non-Smooth Solutions
\jour Regul. Chaotic Dyn.
\yr 2007
\vol 12
\issue 1
\pages 1--11
\mathnet{http://mi.mathnet.ru/rcd607}
\crossref{https://doi.org/10.1134/S1560354707010017}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2350292}
\zmath{https://zbmath.org/?q=an:1229.37014}
Linking options:
  • https://www.mathnet.ru/eng/rcd607
  • https://www.mathnet.ru/eng/rcd/v12/i1/p1
  • This publication is cited in the following 5 articles:
    1. Wang Y., Wang L., Ni Q., Yang M., Liu D., Qin T., “Non-Smooth Dynamics of Articulated Pipe Conveying Fluid Subjected to a One-Sided Rigid Stop”, Appl. Math. Model., 89:1 (2021), 802–818  crossref  mathscinet  isi  scopus
    2. Marius-F. Danca, “Continuous Approximations of a Class of Piecewise Continuous Systems”, Int. J. Bifurcation Chaos, 25:11 (2015), 1550146  crossref
    3. Marius-F. Danca, Roberto Garrappa, “Suppressing chaos in discontinuous systems of fractional order by active control”, Applied Mathematics and Computation, 257 (2015), 89  crossref
    4. Marius-F. Danca, Miguel Romera, Gerardo Pastor, Fausto Montoya, “Finding attractors of continuous-time systems by parameter switching”, Nonlinear Dyn, 67:4 (2012), 2317  crossref
    5. Marius-F. Danca, “On the uniqueness of solutions to a class of discontinuous dynamical systems”, Nonlinear Analysis: Real World Applications, 11:3 (2010), 1402  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:81
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025