Abstract:
We propose new formulas for eigenvectors of the Gaudin model in the sl(3) case. The central point of the construction is the explicit form of some operator P, which is used for derivation of eigenvalues given by the formula
|w1,w2)=∞∑n=0Pnn!|w1,w2,0>,
where w1,w2 fulfil the standard well-know Bethe Ansatz equations.
Citation:
Č. Burdík, O. Navrátil, “New Formula for the Eigenvectors of the Gaudin Model in the sl(3) Case”, Regul. Chaotic Dyn., 13:5 (2008), 403–416
\Bibitem{BurNav08}
\by {\v C}.~Burd{\'\i}k, O.~Navr{\' a}til
\paper New Formula for the Eigenvectors of the Gaudin Model in the $sl(3)$ Case
\jour Regul. Chaotic Dyn.
\yr 2008
\vol 13
\issue 5
\pages 403--416
\mathnet{http://mi.mathnet.ru/rcd586}
\crossref{https://doi.org/10.1134/S156035470805002X}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2448338}
\zmath{https://zbmath.org/?q=an:1229.81127}
Linking options:
https://www.mathnet.ru/eng/rcd586
https://www.mathnet.ru/eng/rcd/v13/i5/p403
This publication is cited in the following 2 articles: