Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2008, Volume 13, Issue 4, Pages 355–368
DOI: https://doi.org/10.1134/S1560354708040096
(Mi rcd583)
 

This article is cited in 27 scientific papers (total in 27 papers)

Nonholonomic mechanics

On Detachment Conditions in the Problem on the Motion of a Rigid Body on a Rough Plane

A. P. Ivanov

A. N. Kosygin Moscow State Textile University, Malaja Kaluzhskaja ul. 1, 19991 Moscow, Russia
Citations (27)
Abstract: The classical mechanical problem about the motion of a heavy rigid body on a horizontal plane is considered within the framework of theory of systems with unilateral constraints. Under general assumptions about the character of friction, we examine the question on the possibility of detachment of the body from the plane under the action of reaction of the plane and forces of inertia. For systems with rolling, we find new scenarios of the appearing of motions with jumps and impacts. The results obtained are applied to the study of stationary motions of a disk. We have showed the following. 1) In the absence of friction, the detachment conditions on stationary motions do not hold. However, if the angle θ between the symmetry axis and the vertical decreases to zero, motions close to stationary motions are necessarily accompanied by detachments. 2) The same conclusion holds for a thin disk that rolls on the support without sliding. 3) For a disk of nonzero thickness in the absence of sliding, the detachment conditions hold on stationary motions in some domain in the space of parameters; in this case, the angle θ is not less than 49 degrees. For small values of θ, the contact between the body and the support does not break in a neighborhood of stationary motions.
Keywords: unilateral constraint, friction, Painlevé paradoxes.
Received: 13.06.2008
Accepted: 26.06.2008
Bibliographic databases:
Document Type: Personalia
MSC: 70E18, 70E50, 70G70
Language: English
Citation: A. P. Ivanov, “On Detachment Conditions in the Problem on the Motion of a Rigid Body on a Rough Plane”, Regul. Chaotic Dyn., 13:4 (2008), 355–368
Citation in format AMSBIB
\Bibitem{Iva08}
\by A.~P.~Ivanov
\paper On Detachment Conditions in the Problem on the Motion of a Rigid Body on a Rough Plane
\jour Regul. Chaotic Dyn.
\yr 2008
\vol 13
\issue 4
\pages 355--368
\mathnet{http://mi.mathnet.ru/rcd583}
\crossref{https://doi.org/10.1134/S1560354708040096}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2456928}
\zmath{https://zbmath.org/?q=an:1229.70015}
Linking options:
  • https://www.mathnet.ru/eng/rcd583
  • https://www.mathnet.ru/eng/rcd/v13/i4/p355
  • This publication is cited in the following 27 articles:
    1. E Aldo Arroyo, M Aparicio Alcalde, “Jump effect of an eccentric cylinder rolling on an inclined plane”, J. Phys. A: Math. Theor., 57:3 (2024), 035701  crossref
    2. Alexander A. Kilin, Elena N. Pivovarova, “Dynamics of an Unbalanced Disk with a Single Nonholonomic Constraint”, Regul. Chaotic Dyn., 28:1 (2023), 78–106  mathnet  crossref  mathscinet
    3. Jake Buzhardt, Prashanth Chivkula, Phanindra Tallapragada, 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2023, 2493  crossref
    4. Alexander P. Ivanov, “Singularities in the rolling motion of a spherical robot”, International Journal of Non-Linear Mechanics, 145 (2022), 104061  crossref
    5. P. Passas, S. Natsiavas, “A time-stepping method for multibody systems involving frictional impacts and phases with persistent contact”, Mechanism and Machine Theory, 169 (2022), 104591  crossref
    6. Alexander A. Kilin, Elena N. Pivovarova, “Motion control of the spherical robot rolling on a vibrating plane”, Applied Mathematical Modelling, 109 (2022), 492  crossref
    7. Ivanov A.P., “New Feature in Hoop Dynamics: Hidden Jump”, Nonlinear Dyn., 102:4 (2020), 2311–2321  crossref  isi  scopus
    8. Makarenkov O., “Existence and Stability of Limit Cycles in the Model of a Planar Passive Biped Walking Down a Slope”, Proc. R. Soc. A-Math. Phys. Eng. Sci., 476:2233 (2020), 20190450  crossref  mathscinet  isi  scopus
    9. Vakhtang Putkaradze, Stuart M. Rogers, “On the Normal Force and Static Friction Acting on a Rolling Ball Actuated by Internal Point Masses”, Regul. Chaotic Dyn., 24:2 (2019), 145–170  mathnet  crossref
    10. Bronars A., O'Reilly O.M., “Gliding Motions of a Rigid Body: the Curious Dynamics of Littlewood'S Rolling Hoop”, Proc. R. Soc. A-Math. Phys. Eng. Sci., 475:2231 (2019), 20190440  crossref  mathscinet  isi
    11. A. V. Borisov, A. O. Kazakov, E. N. Pivovarova, “Regulyarnaya i khaoticheskaya dinamika v «rezinovoi» modeli volchka Chaplygina”, Nelineinaya dinam., 13:2 (2017), 277–297  mathnet  crossref  elib
    12. Alexander P. Ivanov, “On Final Motions of a Chaplygin Ball on a Rough Plane”, Regul. Chaotic Dyn., 21:7-8 (2016), 804–810  mathnet  crossref
    13. Alexey V. Borisov, Alexey O. Kazakov, Igor R. Sataev, “Spiral Chaos in the Nonholonomic Model of a Chaplygin Top”, Regul. Chaotic Dyn., 21:7-8 (2016), 939–954  mathnet  crossref
    14. A. V. Borisov, A. A. Kilin, I. S. Mamaev, “O probleme Adamara–Gamelya i dinamike kolesnykh ekipazhei”, Nelineinaya dinam., 12:1 (2016), 145–163  mathnet
    15. Maria Przybylska, Stefan Rauch-Wojciechowski, “Dynamics of a Rolling and Sliding Disk in a Plane. Asymptotic Solutions, Stability and Numerical Simulations”, Regul. Chaotic Dyn., 21:2 (2016), 204–231  mathnet  mathscinet
    16. Alexey V. Borisov, Alexey O. Kazakov, Elena N. Pivovarova, “Regular and Chaotic Dynamics in the Rubber Model of a Chaplygin Top”, Regul. Chaotic Dyn., 21:7-8 (2016), 885–901  mathnet  crossref
    17. Maria Przybylska, Stefan Rauch-Wojciechowski, “Dynamics of a Rolling and Sliding Disk in a Plane. Asymptotic Solutions, Stability and Numerical Simulations”,  mathnet  mathnet  crossref  isi
    18. Alexey V. Borisov, Ivan S. Mamaev, Yury L. Karavaev, “On the loss of contact of the Euler disk”, Nonlinear Dyn, 79:4 (2015), 2287  crossref
    19. Alexey V. Borisov, Alexander A. Kilin, Ivan S. Mamaev, “On the Hadamard–Hamel Problem and the Dynamics of Wheeled Vehicles”, Regul. Chaotic Dyn., 20:6 (2015), 752–766  mathnet  crossref  mathscinet  adsnasa
    20. Yizhar Or, “Painlevé’s Paradox and Dynamic Jamming in Simple Models of Passive Dynamic Walking”, Regul. Chaotic Dyn., 19:1 (2014), 64–80  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:135
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025