Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2008, Volume 13, Issue 3, Pages 234–238
DOI: https://doi.org/10.1134/S1560354708030088
(Mi rcd573)
 

This article is cited in 54 scientific papers (total in 54 papers)

Solitary and Periodic Solutions of the Generalized Kuramoto–Sivashinsky Equation

N. A. Kudryashov

Department of Applied Mathematics, Moscow Engineering and Physics Institute (State University), Kashirskoe Shosse 31, Moscow, 115409 Russia
Citations (54)
Abstract: The generalized Kuramoto–Sivashinsky equation in the case of the power nonlinearity with arbitrary degree is considered. New exact solutions of this equation are presented.
Keywords: exact solution, nonlinear differential equation, Kuramoto–Sivashinsky equation.
Received: 30.04.2008
Accepted: 08.05.2008
Bibliographic databases:
Document Type: Article
MSC: 34E05, 58K55
Language: English
Citation: N. A. Kudryashov, “Solitary and Periodic Solutions of the Generalized Kuramoto–Sivashinsky Equation”, Regul. Chaotic Dyn., 13:3 (2008), 234–238
Citation in format AMSBIB
\Bibitem{Kud08}
\by N.~A.~Kudryashov
\paper Solitary and Periodic Solutions of the Generalized Kuramoto–Sivashinsky Equation
\jour Regul. Chaotic Dyn.
\yr 2008
\vol 13
\issue 3
\pages 234--238
\mathnet{http://mi.mathnet.ru/rcd573}
\crossref{https://doi.org/10.1134/S1560354708030088}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2415376}
\zmath{https://zbmath.org/?q=an:1229.35229}
Linking options:
  • https://www.mathnet.ru/eng/rcd573
  • https://www.mathnet.ru/eng/rcd/v13/i3/p234
  • This publication is cited in the following 54 articles:
    1. Bewar A Mahmood, Shko A Tahir, Karwan H F Jwamer, “An efficient scheme for solving nonlinear generalized kuramoto-sivashinksy processes”, Phys. Scr., 98:10 (2023), 105235  crossref
    2. Bewar A. Mahmood, Karwan H. F. Jwamer, Shko A. Tahir, “A new hybrid technique based on nonpolynomial splines and finite differences for solving the Kuramoto–Sivashinsky equation”, AIP Advances, 13:6 (2023)  crossref
    3. O. González-Gaxiola, A. León-Ramírez, G. Chacón-Acosta, “Application of the Kudryashov Method for Finding Exact Solutions of the Schamel – Kawahara Equation”, Rus. J. Nonlin. Dyn., 18:2 (2022), 203–215  mathnet  crossref  mathscinet
    4. Nikolay A. Kudryashov, Aleksandr A. Kutukov, Sophiya F. Lavrova, Dariya V. Safonova, “On solutions of one of the second-order nonlinear differential equation: An in-depth look and critical review”, Optik, 255 (2022), 168674  crossref
    5. Elena V. Nikolova, Mila Chilikova-Lubomirova, EIGHTH INTERNATIONAL CONFERENCE NEW TRENDS IN THE APPLICATIONS OF DIFFERENTIAL EQUATIONS IN SCIENCES (NTADES2021), 2459, EIGHTH INTERNATIONAL CONFERENCE NEW TRENDS IN THE APPLICATIONS OF DIFFERENTIAL EQUATIONS IN SCIENCES (NTADES2021), 2022, 030028  crossref
    6. Sahar Albosaily, Wael W. Mohammed, Ali Rezaiguia, Mahmoud El-Morshedy, Elsayed M. Elsayed, “The influence of the noise on the exact solutions of a Kuramoto-Sivashinsky equation”, Open Mathematics, 20:1 (2022), 108  crossref
    7. Wael W. Mohammed, A. M. Albalahi, S. Albadrani, E. S. Aly, R Sidaoui, A. E. Matouk, A. M. Nagy, “The Analytical Solutions of the Stochastic Fractional Kuramoto–Sivashinsky Equation by Using the Riccati Equation Method”, Mathematical Problems in Engineering, 2022 (2022), 1  crossref
    8. Seung Whan Chung, Jonathan B. Freund, “An optimization method for chaotic turbulent flow”, Journal of Computational Physics, 457 (2022), 111077  crossref
    9. Mohammed W.W., Alesemi M., Albosaily S., Iqbal N., El-Morshedy M., “The Exact Solutions of Stochastic Fractional-Space Kuramoto-Sivashinsky Equation By Using (G `/G)-Expansion Method”, Mathematics, 9:21 (2021), 2712  crossref  isi  scopus
    10. Fibay Urbain, N. A. Kudryashov, E. Tala-Tebue, Malwe Boudoue Hubert, S. Y. Doka, Kofane Timoleon Crepin, “Exact solutions of the KdV equation with dual-power law nonlinearty”, Comput. Math. Math. Phys., 61:3 (2021), 431–435  mathnet  mathnet  crossref  crossref  isi  scopus
    11. SeungWhan Chung, Jonathan B. Freund, “An Optimization Method for Chaotic Turbulent Flow”, SSRN Journal, 2021  crossref
    12. Oswaldo González-Gaxiola, Anjan Biswas, Mir Asma, Abdullah Kamis Alzahrani, “Optical Dromions and Domain Walls with the Kundu – Mukherjee – Naskar Equation by the Laplace – Adomian Decomposition Scheme”, Regul. Chaotic Dyn., 25:4 (2020), 338–348  mathnet  crossref
    13. Kudryashov N.A., “First Integrals and General Solutions of the Biswas-Milovic Equation”, Optik, 210 (2020), 164490  crossref  mathscinet  isi  scopus
    14. Kudryashov N.A., “Method For Finding Highly Dispersive Optical Solitons of Nonlinear Differential Equations”, Optik, 206 (2020), 163550  crossref  mathscinet  isi  scopus
    15. Kudryashov N.A., “Periodic and Solitary Waves of the Biswas-Arshed Equation”, Optik, 200 (2020), 163442  crossref  isi  scopus
    16. N. A. Kudryashov, “On Integrability of the FitzHugh – Rinzel Model”, Rus. J. Nonlin. Dyn., 15:1 (2019), 13–19  mathnet  crossref  elib
    17. Nikolay A. Kudryashov, Dariya V. Safonova, Anjan Biswas, “Painlevé Analysis and a Solution to the Traveling Wave Reduction of the Radhakrishnan – Kundu – Lakshmanan Equation”, Regul. Chaotic Dyn., 24:6 (2019), 607–614  mathnet  crossref
    18. Kudryashov N.A., “Solitary and Periodic Waves of the Hierarchy For Propagation Pulse in Optical Fiber”, Optik, 194 (2019), 163060  crossref  isi  scopus
    19. Kudryashov N.A., “Construction of Nonlinear Differential Equations For Description of Propagation Pulses in Optical Fiber”, Optik, 192 (2019), 162964  crossref  isi  scopus
    20. Kudryashov N.A., “Traveling Wave Reduction of the Modified Kdv Hierarchy: the Lax Pair and the First Integrals”, Commun. Nonlinear Sci. Numer. Simul., 73 (2019), 472–480  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:165
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025