Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2008, Volume 13, Issue 3, Pages 178–190
DOI: https://doi.org/10.1134/S1560354708030040
(Mi rcd569)
 

This article is cited in 27 scientific papers (total in 27 papers)

On Maximally Superintegrable Systems

A. V. Tsiganov

V. A. Fock Institute of Physics, St. Petersburg State University, Petrodvorets, ul. Ulyanovskaya 1, St. Petersburg, 198504 Russia
Citations (27)
Abstract: Locally any completely integrable system is maximally superintegrable system since we have the necessary number of the action-angle variables. The main problem is the construction of the single-valued additional integrals of motion on the whole phase space by using these multi-valued action-angle variables. Some constructions of the additional integrals of motion for the Stackel systems and for the integrable systems related with two different quadratic r-matrix algebras are discussed. Among these system there are the open Heisenberg magnet and the open Toda lattices associated with the different root systems.
Keywords: superintegrable systems, Toda lattices, Stackel systems.
Received: 09.01.2008
Accepted: 28.04.2008
Bibliographic databases:
Document Type: Article
MSC: 37J35, 53B20
Language: English
Citation: A. V. Tsiganov, “On Maximally Superintegrable Systems”, Regul. Chaotic Dyn., 13:3 (2008), 178–190
Citation in format AMSBIB
\Bibitem{Tsi08}
\by A.~V.~Tsiganov
\paper On Maximally Superintegrable Systems
\jour Regul. Chaotic Dyn.
\yr 2008
\vol 13
\issue 3
\pages 178--190
\mathnet{http://mi.mathnet.ru/rcd569}
\crossref{https://doi.org/10.1134/S1560354708030040}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2415372}
\zmath{https://zbmath.org/?q=an:1229.37075}
Linking options:
  • https://www.mathnet.ru/eng/rcd569
  • https://www.mathnet.ru/eng/rcd/v13/i3/p178
  • This publication is cited in the following 27 articles:
    1. A. V. Tsyganov, “O tenzornykh invariantakh dlya integriruemykh sluchaev dvizheniya tverdogo tela Eilera, Lagranzha i Kovalevskoi”, Izv. RAN. Ser. matem., 89:2 (2025), 161–188  mathnet  crossref
    2. A. V. Tsiganov, “On rotation invariant integrable systems”, Izv. Math., 88:2 (2024), 389–409  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. Akash Sinha, Aritra Ghosh, “Jacobi last multiplier and two-dimensional superintegrable oscillators”, Pramana - J Phys, 98:3 (2024)  crossref
    4. Andrey V. Tsiganov, “Rotations and Integrability”, Regul. Chaotic Dyn., 29:6 (2024), 913–930  mathnet  crossref
    5. Akash Sinha, Aritra Ghosh, Bijan Bagchi, “Dynamical symmetries of the anisotropic oscillator”, Phys. Scr., 98:9 (2023), 095253  crossref
    6. İsmet Yurduşen, Adrián Mauricio Escobar-Ruiz, Irlanda Palma y Meza Montoya, “Doubly Exotic Nth-Order Superintegrable Classical Systems Separating in Cartesian Coordinates”, SIGMA, 18 (2022), 039, 20 pp.  mathnet  crossref  mathscinet
    7. Idriss El Fakkousy, Bouchta Zouhairi, Mohammed Benmalek, Jaouad Kharbach, Abdellah Rezzouk, Mohammed Ouazzani-Jamil, “Classical and quantum integrability of the three-dimensional generalized trapped ion Hamiltonian”, Chaos, Solitons & Fractals, 161 (2022), 112361  crossref
    8. Deshmukh P.C., Ganesan A., Banerjee S., Mandal A., “Accidental Degeneracy of the Hydrogen Atom and Its Non-Accidental Solution in Parabolic Coordinates”, Can. J. Phys., 99:10 (2021), 853–860  crossref  isi  scopus
    9. Lazureanu C., “On the Integrable Deformations of the Maximally Superintegrable Systems”, Symmetry-Basel, 13:6 (2021), 1000  crossref  isi  scopus
    10. Tsiganov A.V., “Reduction of Divisors For Classical Superintegrable Gl(3) Magnetic Chain”, J. Math. Phys., 61:11 (2020), 112703  crossref  mathscinet  zmath  isi  scopus
    11. Tsiganov A.V., “Superintegrable Systems and Riemann-Roch Theorem”, J. Math. Phys., 61:1 (2020), 012701  crossref  mathscinet  zmath  isi  scopus
    12. Andrey V. Tsiganov, “The Kepler Problem: Polynomial Algebra of Nonpolynomial First Integrals”, Regul. Chaotic Dyn., 24:4 (2019), 353–369  mathnet  crossref  mathscinet
    13. Tsiganov A.V., “Elliptic Curve Arithmetic and Superintegrable Systems”, Phys. Scr., 94:8 (2019), 085207  crossref  isi  scopus
    14. Tsiganov A.V., “Transformation of the Stackel Marices Preserving Superintegrability”, J. Math. Phys., 60:4 (2019), 042701  crossref  mathscinet  zmath  isi  scopus
    15. Yu.A. Grigoriev, A.V. Tsiganov, “On superintegrable systems separable in Cartesian coordinates”, Physics Letters A, 382:32 (2018), 2092  crossref
    16. Yuxuan Chen, Ernie G. Kalnins, Qiushi Li, Willard Miller Jr., “Examples of Complete Solvability of 2D Classical Superintegrable Systems”, SIGMA, 11 (2015), 088, 51 pp.  mathnet  crossref
    17. Willard Miller, Sarah Post, Pavel Winternitz, “Classical and quantum superintegrability with applications”, J. Phys. A: Math. Theor., 46:42 (2013), 423001  crossref
    18. I. A. Bizyaev, A. V. Tsyganov, “O sfere Rausa”, Nelineinaya dinam., 8:3 (2012), 569–583  mathnet
    19. Andrey V. Tsiganov, “Superintegrable Stäckel systems on the plane: elliptic and parabolic coordinates”, SIGMA, 8 (2012), 031, 9 pp.  mathnet  crossref  mathscinet
    20. Ernie G. Kalnins, Willard Miller Jr., “Structure theory for extended Kepler–Coulomb 3D classical superintegrable systems”, SIGMA, 8 (2012), 034, 25 pp.  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:116
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025