Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2008, Volume 13, Issue 2, Pages 85–95
DOI: https://doi.org/10.1134/S1560354708020032
(Mi rcd563)
 

This article is cited in 8 scientific papers (total in 8 papers)

Dynamics of Perturbed Equilateral and Collinear Ñonfigurations of Three Point Vortices

A. I. Gudimenko

Pacific Oceanological Institute, Russian Academy of Sciences, ul. Baltiyskaya 43, Vladivostok, 690041 Russia
Citations (8)
Abstract: Using the technique of asymptotic expansions, we calculate trajectories of three point vortices in the vicinity of stable equilateral or collinear configurations. We show that in an appropriate rotating coordinate system each vortex moves in an elliptic orbit. The orbits of the vortices have equal eccentricities. The angle and ratio between the major axes of any two orbits have a simple analytic representation.
Keywords: point vortices, integrable dynamics, perturbation theory.
Received: 20.11.2007
Accepted: 26.12.2007
Bibliographic databases:
Document Type: Article
Language: English
Citation: A. I. Gudimenko, “Dynamics of Perturbed Equilateral and Collinear Ñonfigurations of Three Point Vortices”, Regul. Chaotic Dyn., 13:2 (2008), 85–95
Citation in format AMSBIB
\Bibitem{Gud08}
\by A.~I.~Gudimenko
\paper Dynamics of Perturbed Equilateral and Collinear Ñonfigurations of Three Point Vortices
\jour Regul. Chaotic Dyn.
\yr 2008
\vol 13
\issue 2
\pages 85--95
\mathnet{http://mi.mathnet.ru/rcd563}
\crossref{https://doi.org/10.1134/S1560354708020032}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2395528}
\zmath{https://zbmath.org/?q=an:1229.37116}
Linking options:
  • https://www.mathnet.ru/eng/rcd563
  • https://www.mathnet.ru/eng/rcd/v13/i2/p85
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024