Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2008, Volume 13, Issue 1, Pages 46–56
DOI: https://doi.org/10.1134/S1560354708010061
(Mi rcd559)
 

Arnold’s Web and Diffusion in the Stark–Quadratic–Zeeman Problem

B. Cordani

Dip. Matematica dell’Università, via Saldini 50 – 20133 Milano, Italy
Abstract: The Arnold web and the Arnold diffusion arise when an integrable Hamiltonian system is slightly perturbed: the first concerns the peculiar topology characterizing the set of the resonance lines in phase space, the latter the extremaly slow motion (if any) along these lines. While Arnold has proved the possibility of diffusion, it is still unknown if the phenomenon is generic in realistic physical systems. The system we consider is the Hydrogen atom (or Kepler problem) subject to the combined action of a constant electric and magnetic field, which is known as Stark–Zeeman problem. We describe the results of numerical experiments: the Arnold web is clearly highlighted and, looking at the behaviour of the KAM frequencies on orbits of 108 revolutions, evidence for the diffusion existence is reached.
Keywords: Arnold’s diffusion, Arnold’s web, Perturbation theory, Stark–Quadratic–Zeeman problem.
Received: 07.11.2007
Accepted: 28.12.2007
Bibliographic databases:
Document Type: Article
Language: English
Citation: B. Cordani, “Arnold’s Web and Diffusion in the Stark–Quadratic–Zeeman Problem”, Regul. Chaotic Dyn., 13:1 (2008), 46–56
Citation in format AMSBIB
\Bibitem{Cor08}
\by B.~Cordani
\paper Arnold’s Web and Diffusion in the Stark–Quadratic–Zeeman Problem
\jour Regul. Chaotic Dyn.
\yr 2008
\vol 13
\issue 1
\pages 46--56
\mathnet{http://mi.mathnet.ru/rcd559}
\crossref{https://doi.org/10.1134/S1560354708010061}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2383298}
\zmath{https://zbmath.org/?q=an:1229.37078}
Linking options:
  • https://www.mathnet.ru/eng/rcd559
  • https://www.mathnet.ru/eng/rcd/v13/i1/p46
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024