Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2009, Volume 14, Issue 2, Pages 179–217
DOI: https://doi.org/10.1134/S1560354709020014
(Mi rcd546)
 

This article is cited in 20 scientific papers (total in 20 papers)

The Hamiltonian Dynamics of Self-gravitating Liquid and Gas Ellipsoids

A. V. Borisov, I. S. Mamaev, A. A. Kilin

Institute of Computer Science, Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia
Citations (20)
Abstract: The dynamics of self-gravitating liquid and gas ellipsoids is considered. A literary survey and authors’ original results obtained using modern techniques of nonlinear dynamics are presented. Strict Lagrangian and Hamiltonian formulations of the equations of motion are given; in particular, a Hamiltonian formalism based on Lie algebras is described. Problems related to nonintegrability and chaos are formulated and analyzed. All the known integrability cases are classified, and the most natural hypotheses on the nonintegrability of the equations of motion in the general case are presented. The results of numerical simulations are described. They, on the one hand, demonstrate a chaotic behavior of the system and, on the other hand, can in many cases serve as a numerical proof of the nonintegrability (the method of transversally intersecting separatrices).
Keywords: liquid and gas self-gravitating ellipsoids, integrability, chaotic behavior.
Received: 03.08.2008
Accepted: 01.12.2008
Bibliographic databases:
Document Type: Article
MSC: 70Hxx
Language: English
Citation: A. V. Borisov, I. S. Mamaev, A. A. Kilin, “The Hamiltonian Dynamics of Self-gravitating Liquid and Gas Ellipsoids”, Regul. Chaotic Dyn., 14:2 (2009), 179–217
Citation in format AMSBIB
\Bibitem{BorMamKil09}
\by A. V. Borisov, I. S. Mamaev, A. A. Kilin
\paper The Hamiltonian Dynamics of Self-gravitating Liquid and Gas Ellipsoids
\jour Regul. Chaotic Dyn.
\yr 2009
\vol 14
\issue 2
\pages 179--217
\mathnet{http://mi.mathnet.ru/rcd546}
\crossref{https://doi.org/10.1134/S1560354709020014}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2505424}
\zmath{https://zbmath.org/?q=an:1229.70049}
Linking options:
  • https://www.mathnet.ru/eng/rcd546
  • https://www.mathnet.ru/eng/rcd/v14/i2/p179
  • This publication is cited in the following 20 articles:
    1. Renata Nikonorova, Dilara Siraeva, Yulia Yulmukhametova, “New Exact Solutions with a Linear Velocity Field for the Gas Dynamics Equations for Two Types of State Equations”, Mathematics, 10:1 (2022), 123  crossref
    2. Olga P. Stoyanovskaya, Vitaliy V. Grigoryev, Anastasiya N. Suslenkova, Maxim N. Davydov, Nikolay V. Snytnikov, “Two-Phase Gas and Dust Free Expansion: Three-Dimensional Benchmark Problem for CFD Codes”, Fluids, 7:2 (2022), 51  crossref
    3. Guo Ya., Hadzic M., Jang J., “Continued Gravitational Collapse For Newtonian Stars”, Arch. Ration. Mech. Anal., 239:1 (2021), 431–552  crossref  mathscinet  zmath  isi  scopus
    4. Fan E., Yuen M., “A Method For Constructing Special Solutions For Multidimensional Generalization of Euler Equations With Coriolis Force”, Chin. J. Phys., 72 (2021), 136–144  crossref  mathscinet  isi  scopus
    5. Rickard C., “The Vacuum Boundary Problem For the Spherically Symmetric Compressible Euler Equations With Positive Density and Unbounded Entropy”, J. Math. Phys., 62:2 (2021), 021504  crossref  mathscinet  isi  scopus
    6. Giron J.F., Ramsey S.D., Baty R.S., “Nemchinov-Dyson Solutions of the Two-Dimensional Axisymmetric Inviscid Compressible Flow Equations”, Phys. Fluids, 32:12 (2020), 127116  crossref  isi  scopus
    7. Olga Rozanova, Marko Turzynsky, Springer Proceedings in Mathematics & Statistics, 292, Nonlinear Analysis and Boundary Value Problems, 2019, 131  crossref
    8. Oleg N. Kirillov, CISM International Centre for Mechanical Sciences, 586, Dynamic Stability and Bifurcation in Nonconservative Mechanics, 2019, 129  crossref
    9. E. Yu. Prosviryakov, “Dynamic equilibria of a nonisothermal fluid”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 22:4 (2018), 735–749  mathnet  crossref  elib
    10. G. Rosensteel, N. Sparks, “SU(3) gauge theory of nuclear rotations”, EPL, 119:6 (2017), 62001  crossref
    11. C. Ragazzo, L. S. Ruiz, “Dynamics of an isolated, viscoelastic, self-gravitating body”, Celest Mech Dyn Astr, 122:4 (2015), 303  crossref
    12. Hugo A. Folonier, Sylvio Ferraz-Mello, Konstantin V. Kholshevnikov, “The flattenings of the layers of rotating planets and satellites deformed by a tidal potential”, Celest Mech Dyn Astr, 122:2 (2015), 183  crossref
    13. Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “Figures of equilibrium of an inhomogeneous self-gravitating fluid”, Celest. Mech. Dyn. Astr., 122:1 (2015), 1–26  mathnet  crossref
    14. I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “Figury ravnovesiya neodnorodnoi samogravitiruyuschei zhidkosti”, Nelineinaya dinam., 10:1 (2014), 73–100  mathnet
    15. Thierry Combot, “Non-integrability of a Self-gravitating Riemann Liquid Ellipsoid”, Regul. Chaotic Dyn., 18:5 (2013), 497–507  mathnet  crossref  mathscinet  zmath
    16. Giorgio Fusco, Piero Negrini, Waldyr M. Oliva, “Stationary Motion of a Self-gravitating Toroidal Incompressible Liquid Layer”, Regul. Chaotic Dyn., 17:5 (2012), 397–416  mathnet  crossref
    17. T. B. Ivanova, “Postroenie bifurkatsionnoi diagrammy i analiz ustoichivosti zhidkogo samogravitiruyuschego ellipticheskogo tsilindra s vnutrennim vrascheniem”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2010, no. 4, 77–86  mathnet  elib
    18. A. V. Borisov, I. S. Mamaev, T. B. Ivanova, “Ustoichivost zhidkogo samogravitiruyuschego ellipticheskogo tsilindra s vnutrennim vrascheniem”, Nelineinaya dinam., 6:4 (2010), 807–822  mathnet  elib
    19. B Gaffet, “Spinning gas clouds with precession: a new formulation”, J. Phys. A: Math. Theor., 43:16 (2010), 165207  crossref
    20. A. V. Borisov, I. S. Mamaev, “Isomorphisms of geodesic flows on quadrics”, Regul. Chaotic Dyn., 14:4 (2009), 455–465  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:152
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025