Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2009, Volume 14, Issue 1, Pages 148–162
DOI: https://doi.org/10.1134/S1560354709010109
(Mi rcd544)
 

This article is cited in 19 scientific papers (total in 19 papers)

JÜRGEN MOSER – 80

On Stability at the Hamiltonian Hopf Bifurcation

L. M. Lerman, A. P. Markova

Department of Differential Equations and Math. Analysis and Research Institute of Applied Mathematics and Cybernetics, Nizhny Novgorod State University, 10, Ulyanova Str. 603005 Nizhny Novgorod, Russia
Citations (19)
Abstract: For a 2 d.o.f. Hamiltonian system we prove the Lyapunov stability of its equilibrium with two double pure imaginary eigenvalues and non-semisimple Jordan form for the linearization matrix, when some coefficient in the 4th order normal form is positive (the equilibrium is known to be unstable, if this coefficient is negative). Such the degenerate equilibrium is met generically in one-parameter unfoldings, the related bifurcation is called to be the Hamiltonian Hopf Bifurcation. Though the stability is known since 1977, proofs that were published are either incorrect or not complete. Our proof is based on the KAM theory and a work with the Weierstrass elliptic functions, estimates of power series and scaling.
Keywords: Hamiltonian Hopf Bifurcation, KAM theory, Lyapunov stability, normal form, action-angle variables, elliptic functions, scaling.
Received: 31.08.2008
Accepted: 04.12.2008
Bibliographic databases:
Document Type: Personalia
Language: English
Citation: L. M. Lerman, A. P. Markova, “On Stability at the Hamiltonian Hopf Bifurcation”, Regul. Chaotic Dyn., 14:1 (2009), 148–162
Citation in format AMSBIB
\Bibitem{LerMar09}
\by L. M. Lerman, A. P. Markova
\paper On Stability at the Hamiltonian Hopf Bifurcation
\jour Regul. Chaotic Dyn.
\yr 2009
\vol 14
\issue 1
\pages 148--162
\mathnet{http://mi.mathnet.ru/rcd544}
\crossref{https://doi.org/10.1134/S1560354709010109}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2480956}
\zmath{https://zbmath.org/?q=an:1229.37056}
Linking options:
  • https://www.mathnet.ru/eng/rcd544
  • https://www.mathnet.ru/eng/rcd/v14/i1/p148
  • This publication is cited in the following 19 articles:
    1. B. S. Bardin, E. V. Volkov, “The Lyapunov Stability of Central Configurations of the Planar Circular Restricted Four-Body Problem”, Cosmic Res, 62:5 (2024), 388  crossref
    2. Tatiana Titova, Lecture Notes in Networks and Systems, 574, XV International Scientific Conference “INTERAGROMASH 2022”, 2023, 1282  crossref
    3. Kenneth R. Meyer, Dieter S. Schmidt, “Normal Forms for Hamiltonian Systems in Some Nilpotent Cases”, Regul. Chaotic Dyn., 27:5 (2022), 538–560  mathnet  crossref  mathscinet
    4. B. S. Bardin, A. N. Avdyushkin, “On Stability of the Collinear Libration Point $L_1$ in the Planar Restricted Circular Photogravitational Three-Body Problem”, Rus. J. Nonlin. Dyn., 18:4 (2022), 543–562  mathnet  crossref  mathscinet
    5. O. V. Kholostova, “On Nonlinear Oscillations of a Near-Autonomous Hamiltonian System in the Case of Two Identical Integer or Half-Integer Frequencies”, Rus. J. Nonlin. Dyn., 17:1 (2021), 77–102  mathnet  crossref  mathscinet
    6. A. I. Neishtadt, D. V. Treschev, “Dynamical phenomena connected with stability loss of equilibria and periodic trajectories”, Russian Math. Surveys, 76:5 (2021), 883–926  mathnet  crossref  crossref  mathscinet  zmath  isi
    7. B S Bardin, A N Avdyushkin, “On stability of a collinear libration point in the planar circular restricted photogravitational three-body problem in the cases of first and second order resonances”, J. Phys.: Conf. Ser., 1959:1 (2021), 012004  crossref
    8. Daniela Cárcamo-Díaz, Jesús F. Palacián, Claudio Vidal, Patricia Yanguas, “On the Nonlinear Stability of the Triangular Points in the Circular Spatial Restricted Three-body Problem”, Regul. Chaotic Dyn., 25:2 (2020), 131–148  mathnet  crossref
    9. B S Bardin, E V Volkov, “Stability Study of a Relative Equilibrium in the Planar Circular Restricted Four-Body Problem”, IOP Conf. Ser.: Mater. Sci. Eng., 927:1 (2020), 012012  crossref
    10. Tatiana Titova, “Properties of canonical transformations of linear Hamiltonian systems”, IOP Conf. Ser.: Mater. Sci. Eng., 365 (2018), 042017  crossref
    11. Kenneth R. Meyer, Daniel C. Offin, Applied Mathematical Sciences, 90, Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, 2017, 305  crossref
    12. Leonid Kurakin, Andrey Melekhov, Irina Ostrovskaya, “A survey of the stability criteria of Thomson's vortex polygons outside a circular domain”, Bol. Soc. Mat. Mex., 22:2 (2016), 733  crossref
    13. Claudio Vidal, Jhon Vidarte, “Stability of the equilibrium solutions in a charged restricted circular three-body problem”, Journal of Differential Equations, 260:6 (2016), 5128  crossref
    14. Ernest Fontich, Carles Simó, Arturo Vieiro, Trends in Mathematics, 4, Extended Abstracts Spring 2014, 2015, 77  crossref
    15. Kenneth R. Meyer, Jesús F. Palacián, Patricia Yanguas, “Stability of a Hamiltonian System in a Limiting Case”, Regul. Chaotic Dyn., 17:1 (2012), 24–35  mathnet  crossref
    16. Leonid G. Kurakin, “On the Stability of Thomson’s Vortex Pentagon Inside a Circular Domain”, Regul. Chaotic Dyn., 17:2 (2012), 150–169  mathnet  crossref
    17. Víctor Lanchares, Ana I. Pascual, Antonio Elipe, “Determination of Nonlinear Stability for Low Order Resonances by a Geometric Criterion”, Regul. Chaotic Dyn., 17:3 (2012), 307–317  mathnet  crossref  scopus
    18. L. G. Kurakin, “Ob ustoichivosti tomsonovskogo vikhrevogo pyatiugolnika vnutri kruga”, Nelineinaya dinam., 7:3 (2011), 465–488  mathnet
    19. José Pedro Gaivão, Vassili Gelfreich, “Splitting of separatrices for the Hamiltonian-Hopf bifurcation with the Swift–Hohenberg equation as an example”, Nonlinearity, 24:3 (2011), 677  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:127
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025