Abstract:
This paper presents results of numerical statistical analysis of the effect of shortterm localized noise of different intensity on the amplitude chimera lifetime in an ensemble of nonlocally coupled logistic maps in a chaotic regime. It is shown that a single and rather weak noise perturbation added only to the incoherence cluster of the amplitude chimera after its switching to the phase chimera mode is able to revive and stabilize the amplitude chimera, as well as to increase its lifetime to infinity. It is also analyzed how the amplitude chimera lifetime depends on the duration of noise influence of different intensity.
This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) — Projektnummer 163436311-SFB 910, and by the Russian Ministry of Education
and Science (Project Code 3.8616.2017).
Citation:
Elena V. Rybalova, Daria Y. Klyushina, Vadim S. Anishchenko, Galina I. Strelkova, “Impact of Noise on the Amplitude Chimera Lifetime in an Ensemble of Nonlocally Coupled Chaotic Maps”, Regul. Chaotic Dyn., 24:4 (2019), 432–445
\Bibitem{RybKlyAni19}
\by Elena V. Rybalova, Daria Y. Klyushina, Vadim S. Anishchenko, Galina I. Strelkova
\paper Impact of Noise on the Amplitude Chimera Lifetime in an Ensemble of Nonlocally Coupled Chaotic Maps
\jour Regul. Chaotic Dyn.
\yr 2019
\vol 24
\issue 4
\pages 432--445
\mathnet{http://mi.mathnet.ru/rcd534}
\crossref{https://doi.org/10.1134/S1560354719040051}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3989316}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000478912400005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85070223785}
Linking options:
https://www.mathnet.ru/eng/rcd534
https://www.mathnet.ru/eng/rcd/v24/i4/p432
This publication is cited in the following 15 articles:
A. D. Ryabchenko, E. V. Rybalova, G. I. Strelkova, “Vozdeistvie additivnogo shuma na khimernye i uedinennye sostoyaniya v neironnykh ansamblyakh”, Izvestiya vuzov. PND, 32:1 (2024), 121–140
E. Rybalova, V. Averyanov, R. Lozi, G. Strelkova, “Peculiarities of the spatio-temporal dynamics of a Hénon–Lozi map network in the presence of Lévy noise”, Chaos, Solitons & Fractals, 184 (2024), 115051
Elena Rybalova, Vasilii Nechaev, Eckehard Schöll, Galina Strelkova, “Chimera resonance in networks of chaotic maps”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 33:9 (2023)
E. Rybalova, S. Muni, G. Strelkova, “Transition from chimera/solitary states to traveling waves”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 33:3 (2023)
Elena Rybalova, Eckehard Schöll, Galina Strelkova, “Controlling chimera and solitary states by additive noise in networks of chaotic maps”, Journal of Difference Equations and Applications, 29:9-12 (2023), 909
Nataliya N. Nikishina, Elena V. Rybalova, Galina I. Strelkova, Tatiyana E. Vadivasova, “Destruction of Cluster Structures in an Ensemble of Chaotic
Maps with Noise-modulated Nonlocal Coupling”, Regul. Chaotic Dyn., 27:2 (2022), 242–251
Elena Rybalova, Galina Strelkova, “Response of solitary states to noise-modulated parameters in nonlocally coupled networks of Lozi maps”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 32:2 (2022)
Ji Zhang, Yiming Liang, Shiqiang Zhu, Tian Xiang, Hongwei Zhu, Jason Gu, Wei Song, Tiefeng Li, 2022 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2022, 184
A. Belyaev, I. Bashkirtseva, L. Ryashko, “Stochastic variability of regular and chaotic dynamics in 2D metapopulation model”, Chaos Solitons Fractals, 151 (2021), 111270
I. Bashkirtseva, L. Ryashko, “Chaotic transients, riddled basins, and stochastic transitions in coupled periodic logistic maps”, Chaos, 31:5 (2021), 053101
A. A. Khatun, H. H. Jafri, N. Punetha, “Controlling chimera states in chaotic oscillator ensembles through linear augmentation”, Phys. Rev. E, 103:4 (2021), 042202
I. A. Shepelev, S. S. Muni, T. E. Vadivasova, “Spatiotemporal patterns in a 2D lattice with linear repulsive and nonlinear attractive coupling”, Chaos, 31:4 (2021), 043136
F. Parastesh, S. Jafari, H. Azarnoush, Z. Shahriari, Zh. Wang, S. Boccaletti, M. Perc, “Chimeras”, Phys. Rep.-Rev. Sec. Phys. Lett., 898:SI (2021), 1–114
G. I. Strelkova, E. V. Rybalova, V. A. Nechaev, “Influence of Parameters Inhomogeneity on the Existence of Chimera States in a Ring of Nonlocally Coupled Maps”, Izv. Vyss. Uchebn. Zaved.-Prikl. Nelineynaya Din., 29:6 (2021), 943–952
I. A. Shepelev, T. E. Vadivasova, “Effects of external global harmonic influence on chimera states”, Nonlinear Dyn., 102:1 (2020), 417–430