Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2015, Volume 20, Issue 2, Pages 189–204
DOI: https://doi.org/10.1134/S1560354715020070
(Mi rcd53)
 

This article is cited in 19 scientific papers (total in 19 papers)

From Chaos to Quasi-Periodicity

Alexander P. Kuznetsovab, Natalia A. Migunovab, Igor R. Sataeva, Yuliya V. Sedovaa, Ludmila V. Turukinaab

a Kotel’nikov Institute of Radio Engineering and Electronics of RAS, Saratov Branch, ul. Zelenaya 38, Saratov, 410019 Russia
b Saratov State University, ul. Astrakhanskaya 83, Saratov, 410012 Russia
Citations (19)
References:
Abstract: Ensembles of several Rössler chaotic oscillators are considered. It is shown that a typical phenomenon for such systems is the emergence of different and sufficiently high dimensional invariant tori. The possibility of a quasi-periodic Hopf bifurcation and a cascade of such bifurcations based on tori of increasing dimension is demonstrated. The domains of resonance tori are revealed. Boundaries of these domains correspond to the saddle-node bifurcations. Inside the domains of resonance modes, torus-doubling bifurcations and destruction of tori are observed.
Keywords: chaos, quasi-periodic oscillation, invariant torus, Lyapunov exponent, bifurcation.
Funding agency Grant number
Russian Foundation for Basic Research 14-02-00085
Ministry of Education and Science of the Russian Federation NSh-1726.2014
This work was supported by the Russian Foundation for Basic Research grant No.14-02-00085 and by RF Presidential program for leading Russian research schools NSh-1726.2014.
Received: 19.01.2015
Bibliographic databases:
Document Type: Article
Language: English
Citation: Alexander P. Kuznetsov, Natalia A. Migunova, Igor R. Sataev, Yuliya V. Sedova, Ludmila V. Turukina, “From Chaos to Quasi-Periodicity”, Regul. Chaotic Dyn., 20:2 (2015), 189–204
Citation in format AMSBIB
\Bibitem{KuzMigSat15}
\by Alexander P. Kuznetsov, Natalia A. Migunova, Igor R. Sataev, Yuliya V. Sedova, Ludmila V. Turukina
\paper From Chaos to Quasi-Periodicity
\jour Regul. Chaotic Dyn.
\yr 2015
\vol 20
\issue 2
\pages 189--204
\mathnet{http://mi.mathnet.ru/rcd53}
\crossref{https://doi.org/10.1134/S1560354715020070}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3332951}
\zmath{https://zbmath.org/?q=an:06468713}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015RCD....20..189K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000352483000007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928261491}
Linking options:
  • https://www.mathnet.ru/eng/rcd53
  • https://www.mathnet.ru/eng/rcd/v20/i2/p189
  • This publication is cited in the following 19 articles:
    1. A.P. Kuznetsov, L.V. Turukina, “About the chaos influence on a system with multi-frequency quasi-periodicity and the Landau-Hopf scenario”, Physica D: Nonlinear Phenomena, 2024, 134425  crossref
    2. Nickolai Shadrin, Natalia Mirzoeva, Vladislav Proskurnin, Elena Anufriieva, “The vertical distribution of 27 elements in bottom sediments reflects the modern history of the hypersaline lagoon”, Regional Studies in Marine Science, 67 (2023), 103183  crossref
    3. Alexander P. Kuznetsov, Yuliya V. Sedova, Nataliya V. Stankevich, “Coupled systems with quasi-periodic and chaotic dynamics”, Chaos, Solitons & Fractals, 169 (2023), 113278  crossref
    4. Alexander P. Kuznetsov, Yuliya V. Sedova, Nataliya V. Stankevich, “Discrete Rössler Oscillators: Maps and Their Ensembles”, Int. J. Bifurcation Chaos, 33:15 (2023)  crossref
    5. Alberto T. Pérez, “Numerical analysis on transition sequence and heat transfer capacity of film boiling with a uniform electric field”, Physics of Fluids, 35:5 (2023)  crossref
    6. Qi Wang, Yifei Guan, Tao Wei, Jian Wu, “Transition sequences and heat transfer enhancement in electro-thermo-convection of a dielectric liquid between two parallel electrodes”, International Journal of Thermal Sciences, 179 (2022), 107705  crossref
    7. Wang Q., Guan Y., Huang J., Wu J., “Chaotic Electro-Convection Flow States of a Dielectric Liquid Between Two Parallel Electrodes”, Eur. J. Mech. B-Fluids, 89 (2021), 332–348  crossref  mathscinet  isi  scopus
    8. Wolba B., Gomonay O., Kravchuk V.P., “Chaotic Antiferromagnetic Nano-Oscillator Driven By Spin Torque”, Phys. Rev. B, 104:2 (2021), 024407  crossref  isi  scopus
    9. Dudkowski D., Wojewoda J., Czolczynski K., Kapitaniak T., “Experimental Chaotic Synchronization For Coupled Double Pendula”, Chaos, 31:6 (2021), 061107  crossref  mathscinet  isi  scopus
    10. Kuznetsov A.P., Stankevich V N., Shchegoleva N.A., “Synchronization of Coupled Generators of Quasi-Periodic Oscillations Upon Destruction of Invariant Curve”, Izv. Vyss. Uchebn. Zaved.-Prikl. Nelineynaya Din., 29:1 (2021), 136–159  mathnet  crossref  isi  scopus
    11. F. Li, Ch. Tai, H. Bao, J. Luo, B. Bao, “Hyperchaos, quasi-period and coexisting behaviors in second-order-memristor-based jerk circuit”, Eur. Phys. J.-Spec. Top., 229:6-7 (2020), 1045–1058  crossref  isi  scopus
    12. Y. Lin, W. B. Liu, H. Bao, Q. Shen, “Bifurcation mechanism of periodic bursting in a simple three-element-based memristive circuit with fast-slow effect”, Chaos Solitons Fractals, 131 (2020), 109524  crossref  mathscinet  isi  scopus
    13. A. P. Kuznetsov, S. P. Kuznetsov, N. A. Shchegoleva, N. V. Stankevich, “Dynamics of coupled generators of quasiperiodic oscillations: different types of synchronization and other phenomena”, Physica D, 398 (2019), 1–12  crossref  mathscinet  isi  scopus
    14. N. Stankevich, A. Kuznetsov, E. Popova, E. Seleznev, “Chaos and hyperchaos via secondary Neimark–Sacker bifurcation in a model of radiophysical generator”, Nonlinear Dyn., 97:4 (2019), 2355–2370  crossref  zmath  isi  scopus
    15. B. C. Bao, P. Y. Wu, H. Bao, Q. Xu, M. Chen, “Numerical and experimental confirmations of quasi-periodic behavior and chaotic bursting in third-order autonomous memristive oscillator”, Chaos Solitons Fractals, 106 (2018), 161–170  crossref  mathscinet  isi  scopus
    16. S. P. Kuznetsov, V. P. Kruglov, “On some simple examples of mechanical systems with hyperbolic chaos”, Proc. Steklov Inst. Math., 297 (2017), 208–234  mathnet  crossref  crossref  mathscinet  isi  elib
    17. S. Das, Y. Saiki, E. Sander, J. A. Yorke, “Quantitative quasiperiodicity”, Nonlinearity, 30:11 (2017), 4111–4140  crossref  mathscinet  zmath  isi  scopus
    18. S. Das, Ch. B. Dock, Y. Saiki, M. Salgado-Flores, E. Sander, J. Wu, J. A. Yorke, “Measuring quasiperiodicity”, EPL, 114:4 (2016), 40005  crossref  isi  scopus
    19. Sergey P. Kuznetsov, “Plate Falling in a Fluid: Regular and Chaotic Dynamics of Finite-dimensional Models”, Regul. Chaotic Dyn., 20:3 (2015), 345–382  mathnet  crossref  mathscinet  zmath  adsnasa
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:205
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025