Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2010, Volume 15, Issue 6, Pages 677–684
DOI: https://doi.org/10.1134/S1560354710060043
(Mi rcd527)
 

This article is cited in 1 scientific paper (total in 1 paper)

Bifurcation analysis of the Zhukovskii–Volterra system via bi-Hamiltonian approach

I. Basak

Department de Matemàtica Aplicada I, Universitat Politecnica de Catalunya, Barcelona, E-08028 Spain
Citations (1)
Abstract: The main goal of this paper consists of bifurcation analysis of classical integrable Zhukovskii–Volterra system. We use the fact that the ZV system is bi-Hamiltonian and apply new techniques [1] for analysis of singularities of bi-Hamiltonian systems, which can be formulated as follows: the structure of singularities of a bi-Hamiltonian system is determined by that of the corresponding compatible Poisson brackets.
Keywords: integrable Hamiltonian sistems, compatible Poisson structures, bifurcations, semisimple Lie algebras.
Received: 28.12.2009
Accepted: 23.02.2010
Bibliographic databases:
Document Type: Article
Language: English
Citation: I. Basak, “Bifurcation analysis of the Zhukovskii–Volterra system via bi-Hamiltonian approach”, Regul. Chaotic Dyn., 15:6 (2010), 677–684
Citation in format AMSBIB
\Bibitem{Bas10}
\by I. Basak
\paper Bifurcation analysis of the Zhukovskii–Volterra system via bi-Hamiltonian approach
\jour Regul. Chaotic Dyn.
\yr 2010
\vol 15
\issue 6
\pages 677--684
\mathnet{http://mi.mathnet.ru/rcd527}
\crossref{https://doi.org/10.1134/S1560354710060043}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2747178}
\zmath{https://zbmath.org/?q=an:1209.37072}
Linking options:
  • https://www.mathnet.ru/eng/rcd527
  • https://www.mathnet.ru/eng/rcd/v15/i6/p677
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:81
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024