Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2010, Volume 15, Issue 4-5, Pages 431–439
DOI: https://doi.org/10.1134/S1560354710040039
(Mi rcd508)
 

This article is cited in 5 scientific papers (total in 5 papers)

On the 60th birthday of professor V.V. Kozlov

Criteria for existence of a Hamiltonian structure

O. I. Bogoyavlenskij, A. P. Reynolds

Department of Mathematics, Queen's University, Kingston, K7L 3N6, Canada
Citations (5)
Abstract: The necessary and sufficient conditions are derived for the existence of a Hamiltonian structure for 3-component non-diagonalizable systems of hydrodynamic type. The conditions are formulated in terms of tensor invariants defined by the metric hij(u) constructed from the Haantjes (1,2)-tensor.
Keywords: Poisson brackets, conformally flat metric, covariant derivatives, Weyl–Schouten equations, Haantjes tensor.
Received: 01.10.2009
Accepted: 10.10.2009
Bibliographic databases:
Document Type: Personalia
MSC: 35L60
Language: English
Citation: O. I. Bogoyavlenskij, A. P. Reynolds, “Criteria for existence of a Hamiltonian structure”, Regul. Chaotic Dyn., 15:4-5 (2010), 431–439
Citation in format AMSBIB
\Bibitem{BogRey10}
\by O. I. Bogoyavlenskij, A. P. Reynolds
\paper Criteria for existence of a Hamiltonian structure
\jour Regul. Chaotic Dyn.
\yr 2010
\vol 15
\issue 4-5
\pages 431--439
\mathnet{http://mi.mathnet.ru/rcd508}
\crossref{https://doi.org/10.1134/S1560354710040039}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2679757}
\zmath{https://zbmath.org/?q=an:1252.35187}
Linking options:
  • https://www.mathnet.ru/eng/rcd508
  • https://www.mathnet.ru/eng/rcd/v15/i4/p431
  • This publication is cited in the following 5 articles:
    1. Tempesta P., Tondo G., “Higher Haantjes Brackets and Integrability”, Commun. Math. Phys., 389:3 (2022), 1647–1671  crossref  mathscinet  isi  scopus
    2. O. I. Mokhov, N. A. Pavlenko, “Classification of the associativity equations with a first-order Hamiltonian operator”, Theoret. and Math. Phys., 197:1 (2018), 1501–1513  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    3. O. I. Mokhov, N. A. Strizhova, “Classification of the associativity equations possessing a Hamiltonian structure of Dubrovin–Novikov type”, Russian Math. Surveys, 73:1 (2018), 175–177  mathnet  mathnet  crossref  crossref  isi  scopus
    4. V. P. Pavlov, V. M. Sergeev, “Fluid dynamics and thermodynamics as a unified field theory”, Proc. Steklov Inst. Math., 294 (2016), 222–232  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    5. A.P. Reynolds, O.I. Bogoyavlenskij, “Lie algebra structures for four-component Hamiltonian hydrodynamic type systems”, Journal of Geometry and Physics, 61:12 (2011), 2400  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:144
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025