Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2010, Volume 15, Issue 2-3, Pages 390–403
DOI: https://doi.org/10.1134/S1560354710020243
(Mi rcd504)
 

This article is cited in 6 scientific papers (total in 6 papers)

On the 75th birthday of Professor L.P. Shilnikov

Poles of tritronquée solution to the Painlevé I equation and cubic anharmonic oscillator

V. Yu. Novokshenov

Institute of Mathematics, RAS, Chernyshevskii str. 112, Ufa, 450077 Russia
Citations (6)
Abstract: The distribution of poles of zero-parameter solution to Painlevé I, specified by P. Boutroux as intégrale tritronquée, is studied in the complex plane. This solution has regular asymptotics z/6+O(1) as z, |argz|<4π/5. At the sector |argz|>4π/5 it is a meromorphic function with regular asymptotic distribution of poles at infinity. This fact together with numeric simulations for |z|<const allowed B. Dubrovin to make a conjecture that all poles of the intégrale tritronquée belong to this sector. As a step to prove this conjecture, we study the Riemann–Hilbert (RH) problem related to the specified solution of the Painlevé I equation. It is "undressed" to a similar RH problem for the Schrödinger equation with cubic potential. The latter determines all coordinates of poles for the intégrale tritronquée via a Bohr–Sommerfeld quantization conditions.
Keywords: Painlevé equation, special functions, distribution of poles, Riemann–Hilbert problem, WKB approximation, Bohr–Sommerfield quantization, complex cubic potential.
Received: 14.11.2009
Accepted: 16.02.2010
Bibliographic databases:
Document Type: Personalia
Language: English
Citation: V. Yu. Novokshenov, “Poles of tritronquée solution to the Painlevé I equation and cubic anharmonic oscillator”, Regul. Chaotic Dyn., 15:2-3 (2010), 390–403
Citation in format AMSBIB
\Bibitem{Nov10}
\by V. Yu. Novokshenov
\paper Poles of tritronquée solution to the Painlevé I equation and cubic anharmonic oscillator
\jour Regul. Chaotic Dyn.
\yr 2010
\vol 15
\issue 2-3
\pages 390--403
\mathnet{http://mi.mathnet.ru/rcd504}
\crossref{https://doi.org/10.1134/S1560354710020243}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2644346}
\zmath{https://zbmath.org/?q=an:1217.34137}
Linking options:
  • https://www.mathnet.ru/eng/rcd504
  • https://www.mathnet.ru/eng/rcd/v15/i2/p390
  • This publication is cited in the following 6 articles:
    1. Ovidiu Costin, Gerald V. Dunne, “Uniformization and Constructive Analytic Continuation of Taylor Series”, Commun. Math. Phys., 392:3 (2022), 863  crossref
    2. Mikhail Bershtein, Pavlo Gavrylenko, Alba Grassi, “Quantum Spectral Problems and Isomonodromic Deformations”, Commun. Math. Phys., 393:1 (2022), 347  crossref
    3. Grassi A., Gu J., Marino M., “Non-Perturbative Approaches to the Quantum Seiberg-Witten Curve”, J. High Energy Phys., 2020, no. 7, 106  crossref  mathscinet  zmath  isi  scopus
    4. Dunne G.V., “Resurgence, Painleve Equations and Conformal Blocks”, J. Phys. A-Math. Theor., 52:46 (2019), 463001  crossref  mathscinet  isi  scopus
    5. Costin O., Dunne V G., “Resurgent Extrapolation: Rebuilding a Function From Asymptotic Data. Painleve i”, J. Phys. A-Math. Theor., 52:44 (2019), 445205  crossref  mathscinet  isi  scopus
    6. Marco Bertola, Alexander Tovbis, “Universality for the Focusing Nonlinear Schrödinger Equation at the Gradient Catastrophe Point: Rational Breathers and Poles of the Tritronquée Solution to Painlevé I”, Comm Pure Appl Math, 66:5 (2013), 678  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:126
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025