Abstract:
The distribution of poles of zero-parameter solution to Painlevé I, specified by P. Boutroux as intégrale tritronquée, is studied in the complex plane. This solution has regular asymptotics −√z/6+O(1) as z→∞, |argz|<4π/5. At the sector |argz|>4π/5 it is a meromorphic function with regular asymptotic distribution of poles at infinity. This fact together with numeric simulations for |z|<const allowed B. Dubrovin to make a conjecture that all poles of the intégrale tritronquée belong to this sector. As a step to prove this conjecture, we study the Riemann–Hilbert (RH) problem related to the specified solution of the Painlevé I equation. It is "undressed" to a similar RH problem for the Schrödinger equation with cubic potential. The latter determines all coordinates of poles for the intégrale tritronquée via a Bohr–Sommerfeld quantization conditions.
Keywords:
Painlevé equation, special functions, distribution of poles, Riemann–Hilbert problem, WKB approximation, Bohr–Sommerfield quantization, complex cubic potential.
Citation:
V. Yu. Novokshenov, “Poles of tritronquée solution to the Painlevé I equation and cubic anharmonic oscillator”, Regul. Chaotic Dyn., 15:2-3 (2010), 390–403
\Bibitem{Nov10}
\by V. Yu. Novokshenov
\paper Poles of tritronquée solution to the Painlevé I equation and cubic anharmonic oscillator
\jour Regul. Chaotic Dyn.
\yr 2010
\vol 15
\issue 2-3
\pages 390--403
\mathnet{http://mi.mathnet.ru/rcd504}
\crossref{https://doi.org/10.1134/S1560354710020243}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2644346}
\zmath{https://zbmath.org/?q=an:1217.34137}
Linking options:
https://www.mathnet.ru/eng/rcd504
https://www.mathnet.ru/eng/rcd/v15/i2/p390
This publication is cited in the following 6 articles:
Ovidiu Costin, Gerald V. Dunne, “Uniformization and Constructive Analytic Continuation of Taylor Series”, Commun. Math. Phys., 392:3 (2022), 863
Mikhail Bershtein, Pavlo Gavrylenko, Alba Grassi, “Quantum Spectral Problems and Isomonodromic Deformations”, Commun. Math. Phys., 393:1 (2022), 347
Grassi A., Gu J., Marino M., “Non-Perturbative Approaches to the Quantum Seiberg-Witten Curve”, J. High Energy Phys., 2020, no. 7, 106
Dunne G.V., “Resurgence, Painleve Equations and Conformal Blocks”, J. Phys. A-Math. Theor., 52:46 (2019), 463001
Costin O., Dunne V G., “Resurgent Extrapolation: Rebuilding a Function From Asymptotic Data. Painleve i”, J. Phys. A-Math. Theor., 52:44 (2019), 445205
Marco Bertola, Alexander Tovbis, “Universality for the Focusing Nonlinear Schrödinger Equation at the Gradient Catastrophe Point: Rational Breathers and Poles of the Tritronquée Solution to Painlevé I”, Comm Pure Appl Math, 66:5 (2013), 678