Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2010, Volume 15, Issue 2-3, Pages 348–353 (Mi rcd500)  

This article is cited in 10 scientific papers (total in 10 papers)

On the 75th birthday of Professor L.P. Shilnikov

Example of blue sky catastrophe accompanied by a birth of Smale–Williams attractor

S. P. Kuznetsovab

a Department of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam-Golm, Germany
b Kotel’nikov’s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch, Zelenaya str., 38, Saratov, 410019, Russia
Citations (10)
Abstract: A model system is proposed, which manifests a blue sky catastrophe giving rise to a hyperbolic attractor of Smale–Williams type in accordance with theory of Shilnikov and Turaev. Some essential features of the transition are demonstrated in computations, including Bernoulli-type discrete-step evolution of the angular variable, inverse square root dependence of the first return time on the bifurcation parameter, certain type of dependence of Lyapunov exponents on control parameter for the differential equations and for the Poincaré map.
Keywords: attractor, bifurcation, Smale–Williams solenoid, Lyapunov exponent.
Received: 24.02.2010
Accepted: 03.03.2010
Document Type: Personalia
Language: English
Citation: S. P. Kuznetsov, “Example of blue sky catastrophe accompanied by a birth of Smale–Williams attractor”, Regul. Chaotic Dyn., 15:2-3 (2010), 348–353
Citation in format AMSBIB
\Bibitem{Kuz10}
\by S. P. Kuznetsov
\paper Example of blue sky catastrophe accompanied by a birth of Smale–Williams attractor
\jour Regul. Chaotic Dyn.
\yr 2010
\vol 15
\issue 2-3
\pages 348--353
\mathnet{http://mi.mathnet.ru/rcd500}
Linking options:
  • https://www.mathnet.ru/eng/rcd500
  • https://www.mathnet.ru/eng/rcd/v15/i2/p348
  • This publication is cited in the following 10 articles:
    1. Kruglov V.P. Kuptsov V P., “Theoretical Models of Physical Systems With Rough Chaos”, Izv. Vyss. Uchebn. Zaved.-Prikl. Nelineynaya Din., 29:1 (2021), 35–77  mathnet  crossref  isi  scopus
    2. V. M. Doroshenko, V. P. Kruglov, S. P. Kuznetsov, “Smale – Williams Solenoids in a System of Coupled Bonhoeffer – van der Pol Oscillators”, Nelin. Dinam., 14:4 (2018), 435–451  mathnet  crossref  elib
    3. Pavel V. Kuptsov, Sergey P. Kuznetsov, Nataliya V. Stankevich, “A Family of Models with Blue Sky Catastrophes of Different Classes”, Regul. Chaotic Dyn., 22:5 (2017), 551–565  mathnet  crossref
    4. V. M. Doroshenko, V. P. Kruglov, S. P. Kuznetsov, “Generator khaosa s attraktorom Smeila–Vilyamsa na osnove effekta gibeli kolebanii”, Nelineinaya dinam., 13:3 (2017), 303–315  mathnet  crossref  elib
    5. Sergey P. Kuznetsov, Vyacheslav P. Kruglov, “Verification of Hyperbolicity for Attractors of Some Mechanical Systems with Chaotic Dynamics”, Regul. Chaotic Dyn., 21:2 (2016), 160–174  mathnet  crossref  mathscinet
    6. A. Yu. Zhalnin, “Ot kvazigarmonicheskikh ostsillyatsii k neironnym spaikam i berstam: raznoobrazie rezhimov giperbolicheskogo khaosa na osnove attraktora Smeila – Vilyamsa”, Nelineinaya dinam., 12:1 (2016), 53–73  mathnet
    7. S. P. Kuznetsov, “Giperbolicheskii khaos v avtokolebatelnykh sistemakh na osnove troinogo sharnirnogo mekhanizma: Proverka otsutstviya kasanii ustoichivykh i neustoichivykh mnogoobrazii fazovykh traektorii”, Nelineinaya dinam., 12:1 (2016), 121–143  mathnet
    8. Sergey P. Kuznetsov, “Hyperbolic Chaos in Self-oscillating Systems Based on Mechanical Triple Linkage: Testing Absence of Tangencies of Stable and Unstable Manifolds for Phase Trajectories”, Regul. Chaotic Dyn., 20:6 (2015), 649–666  mathnet  crossref  mathscinet  adsnasa
    9. Vyacheslav P. Kruglov, Sergey P. Kuznetsov, Arkady Pikovsky, “Attractor of Smale–Williams Type in an Autonomous Distributed System”, Regul. Chaotic Dyn., 19:4 (2014), 483–494  mathnet  crossref  mathscinet  zmath
    10. S. P. Kuznetsov, “Dynamical chaos and uniformly hyperbolic attractors: from mathematics to physics”, Phys. Usp., 54:2 (2011), 119–144  mathnet  crossref  crossref  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:128
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025