Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2010, Volume 15, Issue 2-3, Pages 274–284
DOI: https://doi.org/10.1134/S1560354710020140
(Mi rcd494)
 

This article is cited in 16 scientific papers (total in 16 papers)

On the 75th birthday of Professor L.P. Shilnikov

Chaotic dynamics of two Van der Pol–Duffing oscillators with Huygens coupling

V. N. Belykh, E. V. Pankratova

Mathematics Department, Volga State Academy, Nizhny Novgorod, 603950, Russia
Citations (16)
Abstract: We consider a system of two coupled Van der Pol-Duffing oscillators with Huygens coupling as an appropriate model of two mechanical oscillators connected to a movable platform via a spring. We examine the complicated dynamics of the system and study its multistable behavior. In particular, we reveal the co-existence of several chaotic regimes and study the structure of the associated riddled basins.
Keywords: Van der Pol–Duffing oscillator, coupled systems, chaotic oscillations.
Received: 04.12.2009
Accepted: 22.12.2009
Bibliographic databases:
Document Type: Personalia
Language: English
Citation: V. N. Belykh, E. V. Pankratova, “Chaotic dynamics of two Van der Pol–Duffing oscillators with Huygens coupling”, Regul. Chaotic Dyn., 15:2-3 (2010), 274–284
Citation in format AMSBIB
\Bibitem{BelPan10}
\by V. N. Belykh, E. V. Pankratova
\paper Chaotic dynamics of two Van der Pol–Duffing oscillators with Huygens coupling
\jour Regul. Chaotic Dyn.
\yr 2010
\vol 15
\issue 2-3
\pages 274--284
\mathnet{http://mi.mathnet.ru/rcd494}
\crossref{https://doi.org/10.1134/S1560354710020140}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2644336}
\zmath{https://zbmath.org/?q=an:1203.37054}
Linking options:
  • https://www.mathnet.ru/eng/rcd494
  • https://www.mathnet.ru/eng/rcd/v15/i2/p274
  • This publication is cited in the following 16 articles:
    1. Hany Bauomy, “Control and optimization mechanism of an electromagnetic transducer model with nonlinear magnetic coupling”, MATH, 10:2 (2025), 2891  crossref
    2. Artyom E. Emelin, Evgeny A. Grines, Tatiana A. Levanova, “Chaos in Coupled Heteroclinic Cycles Between Weak Chimeras”, Regul. Chaotic Dyn., 29:1 (2024), 205–217  mathnet  crossref  mathscinet
    3. Liang-qiang Zhou, Fang-qi Chen, “Chaotic Motions of the van der Pol-Duffing Oscillator Subjected to Periodic External and Parametric Excitations with Delayed Feedbacks”, Acta Math. Appl. Sin. Engl. Ser., 40:4 (2024), 1111  crossref
    4. Wang Shuai, Li Yong, Yang Xue, “Synchronization, symmetry and rotating periodic solutions in oscillators with Huygens' coupling”, Physica D: Nonlinear Phenomena, 434 (2022), 133208  crossref
    5. Mao X., Lei F., Li X., Ding W., Shi T., “Multiple Bifurcations and Complex Responses of Nonlinear Time-Delay Oscillators”, J. Comput. Nonlinear Dyn., 16:11 (2021), 111001  crossref  isi  scopus
    6. D. A. Grechko, N. V. Barabash, V. N. Belykh, “Homoclinic Orbits and Chaos in Nonlinear Dynamical Systems: Auxiliary Systems Method”, Lobachevskii J Math, 42:14 (2021), 3365  crossref
    7. G K Annakulova, “Orbital stability analysis of trajectories of highly nonlinear dynamic systems with feedback coupling”, J. Phys.: Conf. Ser., 2131:3 (2021), 032038  crossref
    8. Pena Ramirez J., Nijmeijer H., “Enforcing Synchronization in Oscillators With Huygens' Coupling Via Feed-Forward Control”, Nonlinear Dyn., 98:4, SI (2019), 3009–3023  crossref  zmath  isi  scopus
    9. Siewe M.S., Kenfack W.F., Kofane T.C., “Probabilistic Response of An Electromagnetic Transducer With Nonlinear Magnetic Coupling Under Bounded Noise Excitation”, Chaos Solitons Fractals, 124 (2019), 26–35  crossref  mathscinet  isi  scopus
    10. Allan R. Willms, Petko M. Kitanov, William F. Langford, “Huygens' clocks revisited”, R. Soc. open sci., 4:9 (2017), 170777  crossref
    11. Jonatan Pena Ramirez, Ricardo Cuesta Garcia, Joaquin Alvarez, 2016 Australian Control Conference (AuCC), 2016, 87  crossref
    12. Hong Zang, Tonghua Zhang, Yanduo Zhang, “Stability and bifurcation analysis of delay coupled Van der Pol–Duffing oscillators”, Nonlinear Dyn, 75:1-2 (2014), 35  crossref
    13. P. M. Kitanov, W. Langford, A. R. Willms, “Double Hopf Bifurcation with Huygens Symmetry”, SIAM J. Appl. Dyn. Syst., 12:1 (2013), 126  crossref
    14. Hiba Sheheitli, Richard H. Rand, “Dynamics of a mass–spring–pendulum system with vastly different frequencies”, Nonlinear Dyn, 70:1 (2012), 25  crossref
    15. E.V. Pankratova, V.N. Belykh, “Synchronization of self-sustained oscillators inertially coupled through common damped system”, Physics Letters A, 376:45 (2012), 3076  crossref
    16. R. E. Kondrashov, A. D. Morozov, “O globalnom povedenii reshenii sistemy dvukh uravnenii Dyuffinga – Van der Polya”, Nelineinaya dinam., 7:3 (2011), 437–449  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:133
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025