Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2010, Volume 15, Issue 2-3, Pages 222–236
DOI: https://doi.org/10.1134/S1560354710020103
(Mi rcd490)
 

This article is cited in 4 scientific papers (total in 4 papers)

On the 75th birthday of Professor L.P. Shilnikov

Transverse intersections between invariant manifolds of doubly hyperbolic invariant tori, via the Poincaré–Mel’nikov method

A. Delshamsa, P. Gutiérreza, O. Koltsovab, J. R. Pachaa

a Dep. de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Catalonia, Spain
b Department of Mathematics, Imperial College London, SW7 2AZ London, UK
Citations (4)
Abstract: We consider a perturbation of an integrable Hamiltonian system having an equilibrium point of elliptic–hyperbolic type, having a homoclinic orbit. More precisely, we consider an $(n+2)$-degree-of-freedom near integrable Hamiltonian with $n$ centers and 2 saddles, and assume that the homoclinic orbit is preserved under the perturbation. On the center manifold near the equilibrium, there is a Cantorian family of hyperbolic KAM tori, and we study the homoclinic intersections between the stable and unstable manifolds associated to such tori. We establish that, in general, the manifolds intersect along transverse homoclinic orbits. In a more concrete model, such homoclinic orbits can be detected, in a first approximation, from nondegenerate critical points of a Mel’nikov potential. We provide bounds for the number of transverse homoclinic orbits using that, in general, the potential will be a Morse function (which gives a lower bound) and can be approximated by a trigonometric polynomial (which gives an upper bound).
Keywords: hyperbolic KAM tori, transverse homoclinic orbits, Melnikov method.
Received: 22.12.2009
Accepted: 11.01.2010
Bibliographic databases:
Document Type: Personalia
MSC: 37J40, 37C29, 70H08
Language: English
Citation: A. Delshams, P. Gutiérrez, O. Koltsova, J. R. Pacha, “Transverse intersections between invariant manifolds of doubly hyperbolic invariant tori, via the Poincaré–Mel’nikov method”, Regul. Chaotic Dyn., 15:2-3 (2010), 222–236
Citation in format AMSBIB
\Bibitem{DelGutKol10}
\by A. Delshams, P. Guti\'errez, O. Koltsova, J. R. Pacha
\paper Transverse intersections between invariant manifolds of doubly hyperbolic invariant tori, via the Poincaré–Mel’nikov method
\jour Regul. Chaotic Dyn.
\yr 2010
\vol 15
\issue 2-3
\pages 222--236
\mathnet{http://mi.mathnet.ru/rcd490}
\crossref{https://doi.org/10.1134/S1560354710020103}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2644332}
\zmath{https://zbmath.org/?q=an:1203.37098}
Linking options:
  • https://www.mathnet.ru/eng/rcd490
  • https://www.mathnet.ru/eng/rcd/v15/i2/p222
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:79
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024