Processing math: 100%
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2010, Volume 15, Issue 1, Pages 84–100
DOI: https://doi.org/10.1134/S1560354710010053
(Mi rcd474)
 

This article is cited in 16 scientific papers (total in 16 papers)

The type numbers of closed geodesics

I. A. Taimanov

S.L. Sobolev Institute of Mathematics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
Citations (16)
Abstract: This is a short survey on the type numbers of closed geodesics, on applications of the Morse theory to proving the existence of closed geodesics and on the recent progress in applying variational methods to the periodic problem for Finsler and magnetic geodesics.
Keywords: closed geodesic, Morse theory, loop space, Finsler metric.
Received: 28.12.2009
Bibliographic databases:
Document Type: Article
MSC: 58E10, 53C22, 58E05
Language: English
Citation: I. A. Taimanov, “The type numbers of closed geodesics”, Regul. Chaotic Dyn., 15:1 (2010), 84–100
Citation in format AMSBIB
\Bibitem{Tai10}
\by I. A. Taimanov
\paper The type numbers of closed geodesics
\jour Regul. Chaotic Dyn.
\yr 2010
\vol 15
\issue 1
\pages 84--100
\mathnet{http://mi.mathnet.ru/rcd474}
\crossref{https://doi.org/10.1134/S1560354710010053}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2593232}
\zmath{https://zbmath.org/?q=an:1229.58015}
Linking options:
  • https://www.mathnet.ru/eng/rcd474
  • https://www.mathnet.ru/eng/rcd/v15/i1/p84
  • This publication is cited in the following 16 articles:
    1. Hans-Bert Rademacher, “Simple closed geodesics in dimensions 3”, J. Fixed Point Theory Appl., 26:1 (2024)  crossref
    2. Hans-Bert Rademacher, “Two short closed geodesics on a sphere of odd dimension”, Calc. Var., 62:3 (2023)  crossref
    3. Huagui Duan, Dong Xie, “Multiplicity of closed geodesics on bumpy Finsler manifolds with elliptic closed geodesics”, Journal of Functional Analysis, 284:8 (2023), 109861  crossref
    4. Duan H.G., Liu H., “The Non-Contractibility of Closed Geodesics on Finsler Double-Struck Capital Rpn”, Acta. Math. Sin.-English Ser., 38:1 (2022), 1–21  crossref  mathscinet  isi  scopus
    5. Hui Liu, Yuchen Wang, “Multiplicity of non-contractible closed geodesics on Finsler compact space forms”, Calc. Var., 61:6 (2022)  crossref
    6. Abreu M., Gutt J., Kang J., Macarini L., “Two Closed Orbits For Non-Degenerate Reeb Flows”, Math. Proc. Camb. Philos. Soc., 170:3 (2021), PII S0305004120000018, 625–660  crossref  mathscinet  isi  scopus
    7. Duan H., Long Y., Zhu Ch., “Index Iteration Theories For Periodic Orbits: Old and New”, Nonlinear Anal.-Theory Methods Appl., 201:SI (2020), 111999  crossref  mathscinet  zmath  isi  scopus
    8. Liu H., “The Optimal Lower Bound Estimation of the Number of Closed Geodesics on Finsler Compact Space Form S2N+1/Gamma”, Calc. Var. Partial Differ. Equ., 58:3 (2019), 107  crossref  mathscinet  isi  scopus
    9. Liu H., Long Y., Xiao Yu., “The Existence of Two Non-Contractible Closed Geodesics on Every Bumpy Finsler Compact Space Form”, Discret. Contin. Dyn. Syst., 38:8 (2018), 3803–3829  crossref  mathscinet  zmath  isi  scopus
    10. Hui Liu, “The Fadell–Rabinowitz index and multiplicity of non-contractible closed geodesics on Finsler RPn”, Journal of Differential Equations, 262:3 (2017), 2540  crossref
    11. Marco Radeschi, Burkhard Wilking, “On the Berger conjecture for manifolds all of whose geodesics are closed”, Invent. math., 210:3 (2017), 911  crossref
    12. Hui Liu, Yuming Xiao, “Resonance identity and multiplicity of non-contractible closed geodesics on Finsler RPn”, Advances in Mathematics, 318 (2017), 158  crossref
    13. I. A. Taimanov, “The spaces of non-contractible closed curves in compact space forms”, Sb. Math., 207:10 (2016), 1458–1470  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    14. Alexis Michelat, Tristan Rivière, “A Viscosity method for the min-max construction of closed geodesics”, ESAIM: COCV, 22:4 (2016), 1282  crossref
    15. Benjamin Schmidt, Craig Sutton, “Two remarks on the length spectrum of a Riemannian manifold”, Proc. Amer. Math. Soc., 139:11 (2011), 4113  crossref
    16. I. A. Taimanov, “Periodic magnetic geodesics on almost every energy level via variational methods”, Regul. Chaotic Dyn., 15:4 (2010), 598–605  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:146
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025