Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2011, Volume 16, Issue 1-2, Pages 104–116
DOI: https://doi.org/10.1134/S1560354711010035
(Mi rcd430)
 

This article is cited in 41 scientific papers (total in 41 papers)

Hamiltonicity and integrability of the Suslov problem

Alexey V. Borisov, Alexander A. Kilin, Ivan S. Mamaev

Institute of Computer Science, Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia
Citations (41)
Abstract: The Hamiltonian representation and integrability of the nonholonomic Suslov problem and its generalization suggested by S. A. Chaplygin are considered. This subject is important for understanding the qualitative features of the dynamics of this system, being in particular related to a nontrivial asymptotic behavior (i. e., to a certain scattering problem). A general approach based on studying a hierarchy in the dynamical behavior of nonholonomic systems is developed.
Keywords: Hamiltonian system, Poisson bracket, nonholonomic constraint, invariant measure, integrability.
Received: 09.10.2010
Accepted: 30.11.2010
Bibliographic databases:
Document Type: Article
MSC: 34D20, 70E40, 37J35
Language: English
Citation: Alexey V. Borisov, Alexander A. Kilin, Ivan S. Mamaev, “Hamiltonicity and integrability of the Suslov problem”, Regul. Chaotic Dyn., 16:1-2 (2011), 104–116
Citation in format AMSBIB
\Bibitem{BorKilMam11}
\by Alexey V. Borisov, Alexander A. Kilin, Ivan S. Mamaev
\paper Hamiltonicity and integrability of the Suslov problem
\jour Regul. Chaotic Dyn.
\yr 2011
\vol 16
\issue 1-2
\pages 104--116
\mathnet{http://mi.mathnet.ru/rcd430}
\crossref{https://doi.org/10.1134/S1560354711010035}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2774382}
\zmath{https://zbmath.org/?q=an:1277.70008}
Linking options:
  • https://www.mathnet.ru/eng/rcd430
  • https://www.mathnet.ru/eng/rcd/v16/i1/p104
  • This publication is cited in the following 41 articles:
    1. Luis C. García-Naranjo, Juan C. Marrero, David Martín de Diego, Paolo E. Petit Valdés, “Almost-Poisson Brackets for Nonholonomic Systems with Gyroscopic Terms and Hamiltonisation”, J Nonlinear Sci, 34:6 (2024)  crossref
    2. E. A. Mikishanina, “Omnikolesnaya realizatsiya zadachi Suslova s reonomnoi svyazyu: dinamicheskaya model i upravlenie”, Vestnik rossiiskikh universitetov. Matematika, 29:147 (2024), 296–308  mathnet  crossref
    3. Alexander A. Kilin, Elena N. Pivovarova, “Dynamics of an Unbalanced Disk with a Single Nonholonomic Constraint”, Regul. Chaotic Dyn., 28:1 (2023), 78–106  mathnet  crossref  mathscinet
    4. A. A. Kilin, T. B. Ivanova, “The Integrable Problem of the Rolling Motion of a Dynamically Symmetric Spherical Top with One Nonholonomic Constraint”, Rus. J. Nonlin. Dyn., 19:1 (2023), 3–17  mathnet  crossref  mathscinet
    5. A. J. Maciejewski, M. Przybylska, “Gyrostatic Suslov Problem”, Rus. J. Nonlin. Dyn., 18:4 (2022), 609–627  mathnet  crossref  mathscinet
    6. E. A. Mikishanina, “Issledovanie vliyaniya sluchainykh vozmuschenii na dinamiku sistemy v zadache Suslova”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2021, no. 73, 17–29  mathnet  crossref
    7. Bizyaev I. Bolotin S. Mamaev I., “Normal Forms and Averaging in An Acceleration Problem in Nonholonomic Mechanics”, Chaos, 31:1 (2021), 013132  crossref  mathscinet  isi  scopus
    8. Alexey V. Borisov, Evgeniya A. Mikishanina, “Two Nonholonomic Chaotic Systems. Part I. On the Suslov Problem”, Regul. Chaotic Dyn., 25:3 (2020), 313–322  mathnet  crossref  mathscinet
    9. Bizyaev I.A. Mamaev I.S., “Dynamics of the Nonholonomic Suslov Problem Under Periodic Control: Unbounded Speedup and Strange Attractors”, J. Phys. A-Math. Theor., 53:18 (2020), 185701  crossref  mathscinet  isi  scopus
    10. Alexey Bolsinov, Jinrong Bao, “A Note about Integrable Systems on Low-dimensional Lie Groups and Lie Algebras”, Regul. Chaotic Dyn., 24:3 (2019), 266–280  mathnet  crossref
    11. Vyacheslav P. Kruglov, Sergey P. Kuznetsov, “Topaj – Pikovsky Involution in the Hamiltonian Lattice of Locally Coupled Oscillators”, Regul. Chaotic Dyn., 24:6 (2019), 725–738  mathnet  crossref  mathscinet
    12. Borisov A.V. Kilin A.A. Pivovarova E.N., “Speedup of the Chaplygin TOP By Means of Rotors”, Dokl. Phys., 64:3 (2019), 120–124  mathnet  crossref  isi  scopus
    13. Borisov A. Kilin A. Mamaev I., “Invariant Submanifolds of Genus 5 and a Cantor Staircase in the Nonholonomic Model of a Snakeboard”, Int. J. Bifurcation Chaos, 29:3 (2019), 1930008  crossref  mathscinet  zmath  isi  scopus
    14. Shengda Hu, Manuele Santoprete, “Suslov Problem with the Clebsch–Tisserand Potential”, Regul. Chaotic Dyn., 23:2 (2018), 193–211  mathnet  crossref
    15. Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “An Invariant Measure and the Probability of a Fall in the Problem of an Inhomogeneous Disk Rolling on a Plane”, Regul. Chaotic Dyn., 23:6 (2018), 665–684  mathnet  crossref  mathscinet
    16. Alexander A. Kilin, Elena N. Pivovarova, “Integrable Nonsmooth Nonholonomic Dynamics of a Rubber Wheel with Sharp Edges”, Regul. Chaotic Dyn., 23:7-8 (2018), 887–907  mathnet  crossref  mathscinet
    17. Putkaradze V., Rogers S., “Constraint Control of Nonholonomic Mechanical Systems”, J. Nonlinear Sci., 28:1 (2018), 193–234  crossref  mathscinet  zmath  isi  scopus
    18. A. V. Borisov, I. S. Mamaev, “Neodnorodnye sani Chaplygina”, Nelineinaya dinam., 13:4 (2017), 625–639  mathnet  crossref  mathscinet  elib
    19. A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “Dynamical systems with non-integrable constraints, vakonomic mechanics, sub-Riemannian geometry, and non-holonomic mechanics”, Russian Math. Surveys, 72:5 (2017), 783–840  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    20. Alexey V. Borisov, Ivan S. Mamaev, “An Inhomogeneous Chaplygin Sleigh”, Regul. Chaotic Dyn., 22:4 (2017), 435–447  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:187
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025