Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2012, Volume 17, Issue 6, Pages 479–491
DOI: https://doi.org/10.1134/S1560354712060019
(Mi rcd416)
 

This article is cited in 20 scientific papers (total in 20 papers)

Flat Metrics are Strict Local Minimizers for the Polynomial Entropy

Clémence Labrousse

Institut de Mathématiques de Jussieu, UMR 7586, Analyse algébrique, 175 rue du Chevaleret, 75013 Paris, France
Citations (20)
Abstract: As we have proved in [11], the geodesic flows associated with the flat metrics on T2 minimize the polynomial entropy hpol. In this paper, we show that, among the geodesic flows that are Bott integrable and dynamically coherent, the geodesic flows associated with flat metrics are local strict minima for hpol. To this aim, we prove a graph property for invariant Lagrangian tori in near-integrable systems.
Keywords: geodesic flows, polynomial entropy, integrable systems.
Received: 12.09.2012
Accepted: 28.09.2012
Bibliographic databases:
Document Type: Article
Language: English
Citation: Clémence Labrousse, “Flat Metrics are Strict Local Minimizers for the Polynomial Entropy”, Regul. Chaotic Dyn., 17:6 (2012), 479–491
Citation in format AMSBIB
\Bibitem{Lab12}
\by Cl\'emence Labrousse
\paper Flat Metrics are Strict Local Minimizers for the Polynomial Entropy
\jour Regul. Chaotic Dyn.
\yr 2012
\vol 17
\issue 6
\pages 479--491
\mathnet{http://mi.mathnet.ru/rcd416}
\crossref{https://doi.org/10.1134/S1560354712060019}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3001095}
\zmath{https://zbmath.org/?q=an:1264.53077}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012RCD....17..479L}
Linking options:
  • https://www.mathnet.ru/eng/rcd416
  • https://www.mathnet.ru/eng/rcd/v17/i6/p479
  • This publication is cited in the following 20 articles:
    1. Lei Liu, Cao Zhao, “Multifractal Analysis of Local Polynomial Entropies”, Front. Math, 19:1 (2024), 89  crossref
    2. Bin Zhang, Deyu Meng, Dongmei Peng, Junjie Zhang, “Billingsley type theorem of Bowen polynomial entropy for fixed-point free flows”, Asian-European J. Math., 17:11 (2024)  crossref
    3. Lei Liu, Xiao Yao Zhou, “Polynomial Entropy of Amenable Group Actions for Noncompact Sets”, Acta. Math. Sin.-English Ser., 39:7 (2023), 1351  crossref
    4. Maša Ɖorić, Jelena Katić, “Polynomial Entropy of Induced Maps of Circle and Interval Homeomorphisms”, Qual. Theory Dyn. Syst., 22:3 (2023)  crossref
    5. Javier Correa, Hellen de Paula, “Polynomial entropy of Morse-Smale diffeomorphisms on surfaces”, Bulletin des Sciences Mathématiques, 182 (2023), 103225  crossref
    6. Lei Liu, Dongmei Peng, “Variational principle for polynomial entropy on subsets of free semigroup actions”, Journal of Difference Equations and Applications, 29:5 (2023), 603  crossref
    7. M. Ðorić, J. Katić, B. Lasković, “On Polynomial Entropy Of Induced Maps On Symmetric Products”, Acta Math. Hungar., 171:2 (2023), 334  crossref
    8. Lei Liu, Cao Zhao, “Polynomial entropy of nonautonomous dynamical systems for noncompact sets”, Journal of Mathematical Analysis and Applications, 509:2 (2022), 125974  crossref
    9. Liu L., Zhao C., “Polynomial Entropy of Subsets For Free Semigroup Actions”, J. Dyn. Control Syst., 2021  crossref  isi  scopus
    10. Peric M., “Polynomial Entropy of the Logistic Map”, Stud. Sci. Math. Hung., 58:2 (2021), 206–215  crossref  mathscinet  isi  scopus
    11. Fan Yu.-W., Fu L., Ouchi G., “Categorical Polynomial Entropy”, Adv. Math., 383 (2021), 107655  crossref  mathscinet  isi  scopus
    12. Cantat S., Paris-Romaskevich O., “Automorphisms of Compact Kahler Manifolds With Slow Dynamics”, Trans. Am. Math. Soc., 374:2 (2021), 1351–1389  crossref  mathscinet  isi  scopus
    13. Katic J., Peric M., “On the Polynomial Entropy For Morse Gradient Systems”, Math. Slovaca, 69:3 (2019), 611–624  crossref  mathscinet  zmath  isi  scopus
    14. Marco J.-P., “Entropy of Billiard Maps and a Dynamical Version of the Birkhoff Conjecture”, J. Geom. Phys., 124 (2018), 413–420  crossref  mathscinet  zmath  isi  scopus
    15. A. Artigue, D. Carrasco-Olivera, I. Monteverde, “Polynomial entropy and expansivity”, Acta Math. Hungar., 152:1 (2017), 140  crossref
    16. Patrick Bernard, Clémence Labrousse, “An entropic characterization of the flat metrics on the two torus”, Geom Dedicata, 180:1 (2016), 187  crossref
    17. Yun Zhao, Yakov Pesin, “Scaled Entropy for Dynamical Systems”, J Stat Phys, 158:2 (2015), 447  crossref
    18. Stefan Rosemann, Konrad Schöbel, “Open problems in the theory of finite-dimensional integrable systems and related fields”, Journal of Geometry and Physics, 87 (2015), 396  crossref
    19. Urs Frauenfelder, Clémence Labrousse, Felix Schlenk, “Slow volume growth for Reeb flows on spherizations and contact Bott–Samelson theorems”, J. Topol. Anal., 07:03 (2015), 407  crossref
    20. Clémence Labrousse, Jean-Pierre Marco, “Polynomial Entropies for Bott Integrable Hamiltonian Systems”, Regul. Chaotic Dyn., 19:3 (2014), 374–414  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:115
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025