Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2019, Volume 24, Issue 1, Pages 90–100
DOI: https://doi.org/10.1134/S1560354719010052
(Mi rcd391)
 

This article is cited in 9 scientific papers (total in 9 papers)

Rational and Special Solutions for Some Painlevé Hierarchies

Nikolay A. Kudryashov

Department of Applied Mathematics, National Research Nuclear University MEPhI, Kashirskoe sh. 31, Moscow, 115409 Russia
Citations (9)
References:
Abstract: A self-similar reduction of the Korteweg–de Vries hierarchy is considered. A linear system of equations associated with this hierarchy is presented. This Lax pair can be used to solve the Cauchy problem for the studied hierarchy. It is shown that special solutions of the self-similar reduction of the KdV hierarchy are determined via the transcendents of the first Painlevé hierarchy. Rational solutions are expressed by means of the Yablonskii–Vorob’ev polynomials. The map of the solutions for the second Painlevé hierarchy into the solutions for the self-similar reduction of the KdV hierarchy is illustrated using the Miura transformation. Lax pairs for equations of the hierarchy for the Yablonskii–Vorob’ev polynomial are discussed. Special solutions to the hierarchy for the Yablonskii–Vorob’ev polynomials are given. Some other hierarchies with properties of the Painlevé hierarchies are presented. The list of nonlinear differential equations whose general solutions are expressed in terms of nonclassical functions is extended.
Keywords: self-similar reduction, KdV hierarchy, Painlevé hierarchy, Painlevé transcendent, transformation.
Funding agency Grant number
Russian Foundation for Basic Research 18-29-10025
The reported study was funded by RFBR according to the research project No. 18-29-10025.
Received: 26.11.2018
Accepted: 12.12.2018
Bibliographic databases:
Document Type: Article
MSC: 34M55
Language: English
Citation: Nikolay A. Kudryashov, “Rational and Special Solutions for Some Painlevé Hierarchies”, Regul. Chaotic Dyn., 24:1 (2019), 90–100
Citation in format AMSBIB
\Bibitem{Kud19}
\by Nikolay A. Kudryashov
\paper Rational and Special Solutions for Some Painlevé Hierarchies
\jour Regul. Chaotic Dyn.
\yr 2019
\vol 24
\issue 1
\pages 90--100
\mathnet{http://mi.mathnet.ru/rcd391}
\crossref{https://doi.org/10.1134/S1560354719010052}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000457880700005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85061209063}
Linking options:
  • https://www.mathnet.ru/eng/rcd391
  • https://www.mathnet.ru/eng/rcd/v24/i1/p90
  • This publication is cited in the following 9 articles:
    1. V. V. Tsegel'nik, “On Bäcklund transformations for some second-order nonlinear differential equations”, Theoret. and Math. Phys., 217:2 (2023), 1755–1766  mathnet  crossref  crossref  mathscinet  adsnasa
    2. Nikolay A. Kudryashov, “Lax Pairs and Rational Solutions of Similarity Reductions for Kupershmidt and Sawada – Kotera Hierarchies”, Regul. Chaotic Dyn., 26:3 (2021), 271–292  mathnet  crossref  mathscinet
    3. Sh. Chen, Yu. Li, M. Jiang, B. Guan, Ya. Liu, F. Bu, “Abundant traveling wave solutions to an intrinsic fractional discrete nonlinear electrical transmission line”, Results Phys., 28 (2021), 104587  crossref  isi  scopus
    4. Nikolay A. Kudryashov, “Lax Pairs and Special Polynomials Associated with Self-similar Reductions of Sawada – Kotera and Kupershmidt Equations”, Regul. Chaotic Dyn., 25:1 (2020), 59–77  mathnet  crossref
    5. Nikolay A. Kudryashov, “Rational Solutions of Equations Associated with the Second Painlevé Equation”, Regul. Chaotic Dyn., 25:3 (2020), 273–280  mathnet  crossref
    6. Oswaldo González-Gaxiola, Anjan Biswas, Mir Asma, Abdullah Kamis Alzahrani, “Optical Dromions and Domain Walls with the Kundu – Mukherjee – Naskar Equation by the Laplace – Adomian Decomposition Scheme”, Regul. Chaotic Dyn., 25:4 (2020), 338–348  mathnet  crossref
    7. Nikolay A. Kudryashov, Dariya V. Safonova, Anjan Biswas, “Painlevé Analysis and a Solution to the Traveling Wave Reduction of the Radhakrishnan – Kundu – Lakshmanan Equation”, Regul. Chaotic Dyn., 24:6 (2019), 607–614  mathnet  crossref
    8. Kudryashov N.A., “General Solution of Traveling Wave Reduction For the Kundu-Mukherjee-Naskar Model”, Optik, 186 (2019), 22–27  crossref  isi  scopus
    9. Kudryashov N.A., “First Integrals and Solutions of the Traveling Wave Reduction For the Triki-Biswas Equation”, Optik, 185 (2019), 275–281  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:281
    References:75
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025