|
This article is cited in 3 scientific papers (total in 3 papers)
Vortex Pairs on the Triaxial Ellipsoid: Axis Equilibria Stability
Jair Koillera, César Castilhob, Adriano Regis Rodriguesc a Departamento de Matemática, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36036-900 Brazil
b Departamento de Matemática, Universidade Federal de Pernambuco, Recife, PE, 50740-540 Brazil
c Universidade Federal Rural de Pernambuco, Recife, PE CEP, 52171-900 Brazil
Abstract:
We consider a pair of opposite vortices moving on the surface of the triaxial ellipsoid
$\mathbb{E}(a,b,c): \, x^2/a + y^2/b + z^2/c = 1,\, a<b<c$.
The equations of motion are transported to $S^2 \times S^2$ via a conformal map that
combines confocal quadric coordinates for the ellipsoid and sphero-conical coordinates in the sphere.
The antipodal pairs form an invariant submanifold for the dynamics.
We characterize the linear stability of the equilibrium pairs at the three axis endpoints.
Keywords:
point vortices, Riemann surfaces.
Received: 15.10.2018 Accepted: 04.01.2019
Citation:
Jair Koiller, César Castilho, Adriano Regis Rodrigues, “Vortex Pairs on the Triaxial Ellipsoid: Axis Equilibria Stability”, Regul. Chaotic Dyn., 24:1 (2019), 61–79
Linking options:
https://www.mathnet.ru/eng/rcd389 https://www.mathnet.ru/eng/rcd/v24/i1/p61
|
Statistics & downloads: |
Abstract page: | 223 | References: | 51 |
|