Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2018, Volume 23, Issue 7-8, Pages 821–841
DOI: https://doi.org/10.1134/S156035471807002X
(Mi rcd369)
 

This article is cited in 4 scientific papers (total in 4 papers)

Exponential Stability in the Perturbed Central Force Problem

Dario Bambusi, Alessandra Fusè, Marco Sansottera

Dipartimento di Matematica “Federigo Enriques”, Università degli Studi di Milano, Via Saldini 50, 20133 Milano
Citations (4)
References:
Abstract: We consider the spatial central force problem with a real analytic potential. We prove that for all analytic potentials, but for the Keplerian and the harmonic ones, the Hamiltonian fulfills a nondegeneracy property needed for the applicability of Nekhoroshev’s theorem. We deduce stability of the actions over exponentially long times when the system is subject to an arbitrary analytic perturbation. The case where the central system is put in interaction with a slow system is also studied and stability over exponentially long time is proved.
Keywords: exponential stability, Nekhoroshev theory, perturbation theory, normal form theory, central force problem.
Received: 30.01.2018
Accepted: 04.12.2018
Bibliographic databases:
Document Type: Article
Language: English
Citation: Dario Bambusi, Alessandra Fusè, Marco Sansottera, “Exponential Stability in the Perturbed Central Force Problem”, Regul. Chaotic Dyn., 23:7-8 (2018), 821–841
Citation in format AMSBIB
\Bibitem{BamFusSan18}
\by Dario Bambusi, Alessandra Fus\`e, Marco Sansottera
\paper Exponential Stability in the Perturbed Central Force Problem
\jour Regul. Chaotic Dyn.
\yr 2018
\vol 23
\issue 7-8
\pages 821--841
\mathnet{http://mi.mathnet.ru/rcd369}
\crossref{https://doi.org/10.1134/S156035471807002X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000458183900002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85061195921}
Linking options:
  • https://www.mathnet.ru/eng/rcd369
  • https://www.mathnet.ru/eng/rcd/v23/i7/p821
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:155
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024