Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2015, Volume 20, Issue 6, Pages 667–678
DOI: https://doi.org/10.1134/S1560354715060039
(Mi rcd36)
 

This article is cited in 10 scientific papers (total in 10 papers)

On an Integrable Magnetic Geodesic Flow on the Two-torus

Iskander A. Taimanovab

a Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia
b Department of Mechanics and Mathematics, Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090 Russia
Citations (10)
References:
Abstract: The magnetic geodesic flow on a flat two-torus with the magnetic field $F=\cos(x)dx\wedge dy$ is completely integrated and the description of all contractible periodic magnetic geodesics is given. It is shown that there are no such geodesics for energy $E\geqslant1/2$, for $E<1/2$ simple periodic magnetic geodesics form two $S^1$-families for which the (fixed energy) action functional is positive and therefore there are no periodic magnetic geodesics for which the action functional is negative.
Keywords: integrable system, magnetic geodesic flow.
Funding agency Grant number
Russian Science Foundation 14-11-00441
The work was supported by RSF (grant 14-11-00441).
Received: 15.08.2015
Accepted: 20.10.2015
Bibliographic databases:
Document Type: Article
MSC: 53D25, 37J35
Language: English
Citation: Iskander A. Taimanov, “On an Integrable Magnetic Geodesic Flow on the Two-torus”, Regul. Chaotic Dyn., 20:6 (2015), 667–678
Citation in format AMSBIB
\Bibitem{Tai15}
\by Iskander A. Taimanov
\paper On an Integrable Magnetic Geodesic Flow on the Two-torus
\jour Regul. Chaotic Dyn.
\yr 2015
\vol 20
\issue 6
\pages 667--678
\mathnet{http://mi.mathnet.ru/rcd36}
\crossref{https://doi.org/10.1134/S1560354715060039}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3431182}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015RCD....20..667T}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000365809000003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84948947783}
Linking options:
  • https://www.mathnet.ru/eng/rcd36
  • https://www.mathnet.ru/eng/rcd/v20/i6/p667
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:311
    Full-text PDF :1
    References:68
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024