Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2012, Volume 17, Issue 6, Pages 512–532
DOI: https://doi.org/10.1134/S1560354712060044
(Mi rcd351)
 

This article is cited in 56 scientific papers (total in 56 papers)

Dynamical Phenomena Occurring due to Phase Volume Compression in Nonholonomic Model of the Rattleback

Alexey V. Borisova, Alexey Yu. Jalnineab, Sergey P. Kuznetsovab, Igor R. Sataevb, Yulia V. Sedovaab

a Institute of Computer Science, Udmurt State University, Universitetskaya 1, Izhevsk, 426034, Russia
b Saratov Branch of Kotel’nikov’s Institute of Radio-Engineering and Electronics of RAS, Zelenaya 38, Saratov, 410019, Russia
Citations (56)
Abstract: We study numerically the dynamics of the rattleback, a rigid body with a convex surface on a rough horizontal plane, in dependence on the parameters, applying methods used earlier for treatment of dissipative dynamical systems, and adapted here for the nonholonomic model. Charts of dynamical regimes on the parameter plane of the total mechanical energy and the angle between the geometric and dynamic principal axes of the rigid body are presented. Characteristic structures in the parameter space, previously observed only for dissipative systems, are revealed. A method for calculating the full spectrum of Lyapunov exponents is developed and implemented. Analysis of the Lyapunov exponents of the nonholonomic model reveals two classes of chaotic regimes. For the model reduced to a 3D map, the first one corresponds to a strange attractor with one positive and two negative Lyapunov exponents, and the second to the chaotic dynamics of quasi-conservative type, when positive and negative Lyapunov exponents are close in magnitude, and the remaining exponent is close to zero. The transition to chaos through a sequence of period-doubling bifurcations relating to the Feigenbaum universality class is illustrated. Several examples of strange attractors are considered in detail. In particular, phase portraits as well as the Lyapunov exponents, the Fourier spectra, and fractal dimensions are presented.
Keywords: rattleback, rigid body dynamics, nonholonomic mechanics, strange attractor, Lyapunov exponents, bifurcation, fractal dimension.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 11.G34.31.0039
We thank A.P. Kuznetsov for useful discussions. The work was carried out as part of research at the Udmurt State University within the framework of the Program of Government of the Russian Federation for state support of scientific research carried out under supervision of leading scientists at Russian institutions of higher professional education (contract No 11.G34.31.0039).
Received: 09.09.2012
Accepted: 06.09.2012
Bibliographic databases:
Document Type: Article
MSC: 74F10, 93D20
Language: English
Citation: Alexey V. Borisov, Alexey Yu. Jalnine, Sergey P. Kuznetsov, Igor R. Sataev, Yulia V. Sedova, “Dynamical Phenomena Occurring due to Phase Volume Compression in Nonholonomic Model of the Rattleback”, Regul. Chaotic Dyn., 17:6 (2012), 512–532
Citation in format AMSBIB
\Bibitem{BorJalKuz12}
\by Alexey V.~Borisov, Alexey Yu.~Jalnine, Sergey P.~Kuznetsov, Igor R.~Sataev, Yulia V.~Sedova
\paper Dynamical Phenomena Occurring due to Phase Volume Compression in Nonholonomic Model of the Rattleback
\jour Regul. Chaotic Dyn.
\yr 2012
\vol 17
\issue 6
\pages 512--532
\mathnet{http://mi.mathnet.ru/rcd351}
\crossref{https://doi.org/10.1134/S1560354712060044}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3001098}
\zmath{https://zbmath.org/?q=an:1263.74021}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012RCD....17..512B}
Linking options:
  • https://www.mathnet.ru/eng/rcd351
  • https://www.mathnet.ru/eng/rcd/v17/i6/p512
  • This publication is cited in the following 56 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:215
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024