Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2018, Volume 23, Issue 5, Pages 530–550
DOI: https://doi.org/10.1134/S1560354718050040
(Mi rcd343)
 

This article is cited in 15 scientific papers (total in 15 papers)

Finite-time Collapse of Three Point Vortices in the Plane

Vikas S. Krishnamurthya, Mark A. Stremlerb

a Erwin Schrodinger International Institute for Mathematics and Physics, Boltzmangasse 9, 1090 Vienna, Austria
b Department of Biomedical Engineering and Mechanics, 460 Turner Street NE, Suite 304, Blacksburg, VA 24061, USA
Citations (15)
References:
Abstract: We investigate the finite-time collapse of three point vortices in the plane utilizing the geometric formulation of three-vortexmotion from Krishnamurthy, Aref and Stremler (2018) Phys. Rev. Fluids 3, 024702. In this approach, the vortex system is described in terms of the interior angles of the triangle joining the vortices, the circle that circumscribes that triangle, and the orientation of the triangle. Symmetries in the governing geometric equations of motion for the general three-vortex problem allow us to consider a reduced parameter space in the relative vortex strengths. The well-known conditions for three-vortex collapse are reproduced in this formulation, and we show that these conditions are necessary and sufficient for the vortex motion to consist of collapsing or expanding self-similar motion. The geometric formulation enables a new perspective on the details of this motion. Relationships are determined between the interior angles of the triangle, the vortex strength ratios, the (finite) system energy, the time of collapse, and the distance traveled by the configuration prior to collapse. Several illustrative examples of both collapsing and expanding motion are given.
Keywords: ideal flow, vortex dynamics, point vortices.
Funding agency
V.S.K. acknowledges financial support from CAPES/Brazil through a Science Without Borders postdoctoral program during his stay at the Federal University of Pernambuco, and the ESI Junior Research Fellowship Program during his stay at the Erwin Schrödinger International Institute for Mathematics and Physics, University of Vienna.
Received: 08.07.2018
Accepted: 18.08.2018
Bibliographic databases:
Document Type: Article
MSC: 70F07, 70K99, 76B47
Language: English
Citation: Vikas S. Krishnamurthy, Mark A. Stremler, “Finite-time Collapse of Three Point Vortices in the Plane”, Regul. Chaotic Dyn., 23:5 (2018), 530–550
Citation in format AMSBIB
\Bibitem{KriStr18}
\by Vikas S. Krishnamurthy, Mark A. Stremler
\paper Finite-time Collapse of Three Point Vortices in the Plane
\jour Regul. Chaotic Dyn.
\yr 2018
\vol 23
\issue 5
\pages 530--550
\mathnet{http://mi.mathnet.ru/rcd343}
\crossref{https://doi.org/10.1134/S1560354718050040}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000447268600004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85054605889}
Linking options:
  • https://www.mathnet.ru/eng/rcd343
  • https://www.mathnet.ru/eng/rcd/v23/i5/p530
  • This publication is cited in the following 15 articles:
    1. Francesco Grotto, Marco Romito, Milo Viviani, “Zero-noise dynamics after collapse for three point vortices”, Physica D: Nonlinear Phenomena, 457 (2024), 133947  crossref
    2. Jiahe Chen, Qihuai Liu, “Sufficient and necessary conditions for self-similar motions of three point vortices in generalized fluid systems”, Physica D: Nonlinear Phenomena, 2024, 134392  crossref
    3. Martin Donati, Ludovic Godard-Cadillac, Dragoş Iftimie, “On the dynamics of point vortices with positive intensities collapsing with the boundary”, Physica D: Nonlinear Phenomena, 470 (2024), 134402  crossref
    4. Martin Donati, “Improbability of Collisions of Point-Vortices in Bounded Planar Domains”, SIAM Rev., 65:1 (2023), 227  crossref
    5. Ludovic Godard-Cadillac, “Hölder estimate for the 3 point-vortex problem with alpha-models”, Comptes Rendus. Mathématique, 361:G1 (2023), 355  crossref
    6. Martin Donati, Ludovic Godard-Cadillac, “Hölder regularity for collapses of point-vortices”, Nonlinearity, 36:11 (2023), 5773  crossref
    7. Sergey G. Chefranov, Igor I. Mokhov, Alexander G. Chefranov, “Investigating the dynamics of point helical vortices on a rotating sphere to model tropical cyclones”, Physics of Fluids, 35:4 (2023)  crossref
    8. Habin Yim, Sun-Chul Kim, Sung-Ik Sohn, “Motion of three geostrophic Bessel vortices”, Physica D: Nonlinear Phenomena, 441 (2022), 133509  crossref
    9. Sreethin Sreedharan Kallyadan, Priyanka Shukla, “Self-similar vortex configurations: Collapse, expansion, and rigid-vortex motion”, Phys. Rev. Fluids, 7:11 (2022)  crossref
    10. Francesco Grotto, Umberto Pappalettera, “Burst of Point Vortices and Non-uniqueness of 2D Euler Equations”, Arch Rational Mech Anal, 245:1 (2022), 89  crossref
    11. Qian Luo, Yufei Chen, Qihuai Liu, “Global Phase Diagrams of Three Point Vortices”, Int. J. Bifurcation Chaos, 32:02 (2022)  crossref
    12. Jean N. Reinaud, David G. Dritschel, Richard K. Scott, “Self-similar collapse of three vortices in the generalised Euler and quasi-geostrophic equations”, Physica D: Nonlinear Phenomena, 434 (2022), 133226  crossref
    13. M. A. Stremler, “Something Old, Something New: Three Point Vortices on the Plane”, Regul. Chaotic Dyn., 26:5 (2021), 482–504  mathnet  crossref
    14. S. S. Kallyadan, P. Shukla, “Dynamics of two moving vortices in the presence of a fixed vortex”, Eur. J. Mech. B-Fluids, 89 (2021), 458–472  crossref  mathscinet  isi  scopus
    15. H. Kudela, “Collapse of N point vortices, formation of the vortex sheets and transport of passive markers”, Energies, 14:4 (2021), 943  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:223
    References:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025