Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2018, Volume 23, Issue 2, Pages 152–160
DOI: https://doi.org/10.1134/S1560354718020028
(Mi rcd315)
 

This article is cited in 27 scientific papers (total in 27 papers)

Asymptotic and Exact Solutions of the FitzHugh–Nagumo Model

Nikolay A. Kudryashov

Department of Applied Mathematics, National Research Nuclear University MEPhI, Kashirskoe sh. 31, Moscow, 115409 Russia
Citations (27)
References:
Abstract: The standard FitzHugh–Nagumo model for description of impulse from one neuron to another is considered. The system of equations is transformed to a nonlinear second-order ordinary differential equation. It is shown that the differential equation does not pass the Painlevé test in the general case and the general solution of this equation does not exist. The simplest solutions of the system of equations are found. The second-order differential equation is transformed to another asymptotic equation with the general solution expressed via the Jacobi elliptic function. This transformation allows us to obtain the asymptotic solutions of the FitzHugh–Nagumo model. The perturbed FitzHugh–Nagumo model is studied as well. Taking into account the simplest equation method, the exact solutions of the perturbed system of equations are found. The asymptotic solutions of the perturbed model are presented too. The application of the exact solutions for construction of the neural networks is discussed.
Keywords: neuron, FitzHugh–Nagumo model, system of equations, Painelevé test, exact solution.
Funding agency Grant number
Russian Science Foundation 17-71-20111
This work was supported by the Research Science Foundation grant 17-71-20111 “Study and justification of mechanisms for spiking neural networks learning based on synaptic plasticity in order to create biologically inspired nonlinear information models capable of solving practical tasks”.
Received: 01.11.2017
Accepted: 22.12.2017
Bibliographic databases:
Document Type: Article
MSC: 34M05, 34E10
Language: English
Citation: Nikolay A. Kudryashov, “Asymptotic and Exact Solutions of the FitzHugh–Nagumo Model”, Regul. Chaotic Dyn., 23:2 (2018), 152–160
Citation in format AMSBIB
\Bibitem{Kud18}
\by Nikolay A. Kudryashov
\paper Asymptotic and Exact Solutions of the FitzHugh–Nagumo Model
\jour Regul. Chaotic Dyn.
\yr 2018
\vol 23
\issue 2
\pages 152--160
\mathnet{http://mi.mathnet.ru/rcd315}
\crossref{https://doi.org/10.1134/S1560354718020028}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000429363300002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85045003274}
Linking options:
  • https://www.mathnet.ru/eng/rcd315
  • https://www.mathnet.ru/eng/rcd/v23/i2/p152
  • This publication is cited in the following 27 articles:
    1. E. Amoroso, C. Colaiacomo, G. D'Aguì, P. Vergallo, “A second order Hamiltonian neural model”, Applied Mathematics Letters, 160 (2025), 109295  crossref
    2. Usman Younas, Jan Muhammad, D. K. Almutairi, Aziz Khan, Thabet Abdeljawad, “Analyzing the neural wave structures in the field of neuroscience”, Sci Rep, 15:1 (2025)  crossref
    3. Nívea D. Bosco, Paulo C. Rech, Marcus W. Beims, Cesar Manchein, “Influence of sinusoidal forcing on the master FitzHugh–Nagumo neuron model and global dynamics of a unidirectionally coupled two-neuron system”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 34:9 (2024)  crossref
    4. Junen Jia, Ying Xie, Chunni Wang, Jun Ma, “Thermosensitive double-membrane neurons and their network dynamics”, Phys. Scr., 99:11 (2024), 115030  crossref
    5. M. Al-Amin, M. Nurul Islam, M. Ali Akbar, “Abundant closed-form solitary solutions of a nonlinear neurobiological model for analyzing numerous signal transmission behaviors through the neuron using recent scheme”, Partial Differential Equations in Applied Mathematics, 2024, 101051  crossref
    6. Hongguang Pan, Haoqian Song, Qi Zhang, Wenyu Mi, “Review of Closed-Loop Brain–Machine Interface Systems From a Control Perspective”, IEEE Trans. Human-Mach. Syst., 52:5 (2022), 877  crossref
    7. Monica De Angelis, “A priori estimates for solutions of FitzHugh–Rinzel system”, Meccanica, 57:5 (2022), 1035  crossref
    8. Cesar Manchein, Luana Santana, Rafael M. da Silva, Marcus W. Beims, “Noise-induced stabilization of the FitzHugh–Nagumo neuron dynamics: Multistability and transient chaos”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 32:8 (2022)  crossref
    9. De Angelis F., De Angelis M., “On solutions to a FitzHugh-Rinzel type model”, Ric. Mat., 70:1 (2021), 51–65  crossref  mathscinet  isi  scopus
    10. A. Jhangeer, M. Muddassar, Z. U. Rehman, J. Awrejcewicz, M. B. Riaz, “Multistability and dynamic behavior of non-linear wave solutions for analytical kink periodic and quasi-periodic wave structures in plasma physics”, Results Phys., 29 (2021), 104735  crossref  isi  scopus
    11. Kwessi E., Edwards L.J., “A nearly exact discretization scheme for the FitzHugh-Nagumo model”, Differ. Equat. Dyn. Syst., 2021  crossref  isi  scopus
    12. L. Santana, R. M. da Silva, H. A. Albuquerque, C. Manchein, “Transient dynamics and multistability in two electrically interacting FitzHugh-Nagumo neurons”, Chaos, 31:5 (2021), 053107  crossref  mathscinet  isi  scopus
    13. Z. Wang, P. Zhang, I. Moroz, A. Karthikeyan, “Complex dynamics of a FitzHugh-Rinzel neuron model considering the effect of electromagnetic induction”, Sci. Iran., 28:3, SI (2021), 1685–1697  crossref  isi  scopus
    14. A. Mondal, K. Ch. Mistri, M. A. Aziz-Alaoui, R. K. Upadhyay, “An analytical scheme on complete integrability of 2D biophysical excitable systems”, Physica A, 573 (2021), 125924  crossref  mathscinet  isi  scopus
    15. F. Lu, Ch. He, J. Xu, “A remark on the meromorphic solutions in the FitzHugh-Nagumo model”, Bull. Malays. Math. Sci. Soc., 44:4 (2021), 2479–2488  crossref  mathscinet  isi  scopus
    16. E. G. Fedorov, A. I. Popov, I. Yu. Popov, “The effect of time delay on the transmission of impulses in a biological neural network”, Appl. Math. E-Notes, 21 (2021), 678–686  mathscinet  isi
    17. Md. Mamunur Roshid, Harun-Or-Roshid, M. Zulfikar Ali, Hadi Rezazadeh, “Kinky periodic pulse and interaction of bell wave with kink pulse wave propagation in nerve fibers and wall motion in liquid crystals”, Partial Differential Equations in Applied Mathematics, 2 (2020), 100012  crossref
    18. A. I. Zemlyanukhin, A. V. Bochkarev, “Analytical Properties and Solutions of the FitzHugh – Rinzel Model”, Rus. J. Nonlin. Dyn., 15:1 (2019), 3–12  mathnet  crossref  elib
    19. N. A. Kudryashov, “On Integrability of the FitzHugh – Rinzel Model”, Rus. J. Nonlin. Dyn., 15:1 (2019), 13–19  mathnet  crossref  elib
    20. Nikolay A. Kudryashov, Dariya V. Safonova, Anjan Biswas, “Painlevé Analysis and a Solution to the Traveling Wave Reduction of the Radhakrishnan – Kundu – Lakshmanan Equation”, Regul. Chaotic Dyn., 24:6 (2019), 607–614  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:400
    References:107
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025