Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2018, Volume 23, Issue 2, Pages 152–160
DOI: https://doi.org/10.1134/S1560354718020028
(Mi rcd315)
 

This article is cited in 25 scientific papers (total in 25 papers)

Asymptotic and Exact Solutions of the FitzHugh–Nagumo Model

Nikolay A. Kudryashov

Department of Applied Mathematics, National Research Nuclear University MEPhI, Kashirskoe sh. 31, Moscow, 115409 Russia
Citations (25)
References:
Abstract: The standard FitzHugh–Nagumo model for description of impulse from one neuron to another is considered. The system of equations is transformed to a nonlinear second-order ordinary differential equation. It is shown that the differential equation does not pass the Painlevé test in the general case and the general solution of this equation does not exist. The simplest solutions of the system of equations are found. The second-order differential equation is transformed to another asymptotic equation with the general solution expressed via the Jacobi elliptic function. This transformation allows us to obtain the asymptotic solutions of the FitzHugh–Nagumo model. The perturbed FitzHugh–Nagumo model is studied as well. Taking into account the simplest equation method, the exact solutions of the perturbed system of equations are found. The asymptotic solutions of the perturbed model are presented too. The application of the exact solutions for construction of the neural networks is discussed.
Keywords: neuron, FitzHugh–Nagumo model, system of equations, Painelevé test, exact solution.
Funding agency Grant number
Russian Science Foundation 17-71-20111
This work was supported by the Research Science Foundation grant 17-71-20111 “Study and justification of mechanisms for spiking neural networks learning based on synaptic plasticity in order to create biologically inspired nonlinear information models capable of solving practical tasks”.
Received: 01.11.2017
Accepted: 22.12.2017
Bibliographic databases:
Document Type: Article
MSC: 34M05, 34E10
Language: English
Citation: Nikolay A. Kudryashov, “Asymptotic and Exact Solutions of the FitzHugh–Nagumo Model”, Regul. Chaotic Dyn., 23:2 (2018), 152–160
Citation in format AMSBIB
\Bibitem{Kud18}
\by Nikolay A. Kudryashov
\paper Asymptotic and Exact Solutions of the FitzHugh–Nagumo Model
\jour Regul. Chaotic Dyn.
\yr 2018
\vol 23
\issue 2
\pages 152--160
\mathnet{http://mi.mathnet.ru/rcd315}
\crossref{https://doi.org/10.1134/S1560354718020028}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000429363300002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85045003274}
Linking options:
  • https://www.mathnet.ru/eng/rcd315
  • https://www.mathnet.ru/eng/rcd/v23/i2/p152
  • This publication is cited in the following 25 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:355
    References:90
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024