Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2018, Volume 23, Issue 1, Pages 120–126
DOI: https://doi.org/10.1134/S1560354718010094
(Mi rcd312)
 

This article is cited in 30 scientific papers (total in 30 papers)

Chaos and Hyperchaos in Coupled Antiphase Driven Toda Oscillators

Nataliya V. Stankevichab, Anton Dvorakb, Vladimir Astakhovc, Patrycja Jarosc, Marcin Kapitaniakd, Przemyslaw Perlikowskic, Tomasz Kapitaniakc

a Faculty of Information Technology, University of Jyvaskyla, P.O. Box 35, FI-40014 Jyvaskyla, Finland
b Department of Radioelectronics and Telecommunications, Yuri Gagarin State Technical University of Saratov, ul. Polytechnicheskaya 77, Saratov, 410054 Russia
c Division of Dynamics, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland
d Centre for Applied Dynamics Research, University of Aberdeen, Aberdeen, AB24 3UE, Scotland
Citations (30)
References:
Abstract: The dynamics of two coupled antiphase driven Toda oscillators is studied. We demonstrate three different routes of transition to chaotic dynamics associated with different bifurcations of periodic and quasi-periodic regimes. As a result of these, two types of chaotic dynamics with one and two positive Lyapunov exponents are observed. We argue that the results obtained are robust as they can exist in a wide range of the system parameters.
Keywords: chaos, hyperchaos, Toda oscillator.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation MK-661.2017.8
9.2108.2017/4.6
N.V.S. acknowledges partial support from the grant of the President of the Russian Federation (MK-661.2017.8), V.V.A. thanks for partial financial support from the Russian Ministry of Science and Education (Project 9.2108.2017/4.6).
Received: 27.07.2017
Accepted: 06.10.2017
Bibliographic databases:
Document Type: Article
MSC: 37C99, 37E99
Language: English
Citation: Nataliya V. Stankevich, Anton Dvorak, Vladimir Astakhov, Patrycja Jaros, Marcin Kapitaniak, Przemyslaw Perlikowski, Tomasz Kapitaniak, “Chaos and Hyperchaos in Coupled Antiphase Driven Toda Oscillators”, Regul. Chaotic Dyn., 23:1 (2018), 120–126
Citation in format AMSBIB
\Bibitem{StaDvoAst18}
\by Nataliya V. Stankevich, Anton Dvorak, Vladimir Astakhov, Patrycja Jaros, Marcin Kapitaniak, Przemyslaw Perlikowski, Tomasz Kapitaniak
\paper Chaos and Hyperchaos in Coupled Antiphase Driven Toda Oscillators
\jour Regul. Chaotic Dyn.
\yr 2018
\vol 23
\issue 1
\pages 120--126
\mathnet{http://mi.mathnet.ru/rcd312}
\crossref{https://doi.org/10.1134/S1560354718010094}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3759974}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000424267100009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85041408796}
Linking options:
  • https://www.mathnet.ru/eng/rcd312
  • https://www.mathnet.ru/eng/rcd/v23/i1/p120
  • This publication is cited in the following 30 articles:
    1. Nataliya V. Stankevich, Andrey A. Bobrovskii, Natalya A. Shchegoleva, “Chaos and Hyperchaos in Two Coupled Identical Hindmarsh – Rose Systems”, Regul. Chaotic Dyn., 29:1 (2024), 120–133  mathnet  crossref
    2. A. Kilina, P. Panteleeva, N. Stankevich, “Multi-dimensional chaos initiated by short pulses in non-autonomous radio-physical generator”, Communications in Nonlinear Science and Numerical Simulation, 2024, 108041  crossref
    3. Nikita Barabash, Igor Belykh, Alexey Kazakov, Michael Malkin, Vladimir Nekorkin, Dmitry Turaev, “In Honor of Sergey Gonchenko and Vladimir Belykh”, Regul. Chaotic Dyn., 29:1 (2024), 1–5  mathnet  crossref
    4. Nataliya Stankevich, “Stabilization and complex dynamics initiated by pulsed force in the Rössler system near saddle-node bifurcation”, Nonlinear Dyn, 112:4 (2024), 2949  crossref
    5. Yang Cao, Peiyu Guo, Luca Guerrini, “Hopf Bifurcation of the Ring Unidirectionally Coupled Toda Oscillators with Distributed Delay”, Int. J. Bifurcation Chaos, 34:12 (2024)  crossref
    6. S. Leo Kingston, Marek Balcerzak, Syamal K. Dana, Tomasz Kapitaniak, “Transition to hyperchaos and rare large-intensity pulses in Zeeman laser”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 33:2 (2023)  crossref
    7. Jinbin Wang, Rui Zhang, Jiankang Liu, “Vibrational resonance analysis in a fractional order Toda oscillator model with asymmetric potential”, International Journal of Non-Linear Mechanics, 148 (2023), 104258  crossref
    8. Xiu Zhao, Xingyuan Wang, Yining Su, Salahuddin Unar, “Network dynamics of a periodically forced chemical system and its application for tuning PID controller with time-delay systems”, Nonlinear Dyn, 111:14 (2023), 13601  crossref
    9. Nataliya Stankevich, Evgeny Volkov, “Emergence and evolution of unusual inhomogeneous limit cycles displacing hyperchaos in three quorum-sensing coupled identical ring oscillators”, Physica D: Nonlinear Phenomena, 455 (2023), 133902  crossref
    10. Jie Zhang, Jinyou Hou, Longhao Xu, Xiaopeng Zhu, Qinggang Xie, “Dynamical analysis, circuit implementation, and simultaneous application of a novel four-dimensional hyperchaotic system based on cosine functions”, Microelectronic Engineering, 271-272 (2023), 111939  crossref
    11. Péter Krähling, Joshua Steyer, Ulrich Parlitz, Ferenc Hegedűs, “Attractor selection in nonlinear oscillators by temporary dual-frequency driving”, Nonlinear Dyn, 111:20 (2023), 19209  crossref
    12. S. Leo Kingston, Tomasz Kapitaniak, Syamal K. Dana, “Transition to hyperchaos: Sudden expansion of attractor and intermittent large-amplitude events in dynamical systems”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 32:8 (2022)  crossref
    13. I. R. Garashchuk, “Asynchronous Chaos and Bifurcations in a Model of Two Coupled Identical Hindmarsh – Rose Neurons”, Rus. J. Nonlin. Dyn., 17:3 (2021), 307–320  mathnet  crossref
    14. N. Stankevich, E. Volkov, “Chaos-hyperchaos transition in three identical quorum-sensing mean-field coupled ring oscillators”, Chaos, 31:10 (2021), 103112  crossref  mathscinet  isi  scopus
    15. O. Kolebaje, O. O. Popoola, U. E. Vincent, “Occurrence of vibrational resonance in an oscillator with an asymmetric Toda potential”, Physica D, 419 (2021), 132853  crossref  mathscinet  isi  scopus
    16. I. R. Garashchuk, D. I. Sinelshchikov, “Bubbling transition as a mechanism of destruction of synchronous oscillations of identical microbubble contrast agents”, Chaos, 31:2 (2021), 023130  crossref  mathscinet  isi  scopus
    17. I. R. Sataev, N. V. Stankevich, “Cascade of torus birth bifurcations and inverse cascade of Shilnikov attractors merging at the threshold of hyperchaos”, Chaos, 31:2 (2021), 023140  crossref  mathscinet  isi  scopus
    18. B. P. Bezruchko, V. I. Ponomarenko, Y. P. Seleznev, “Experimental Studies of Chaotic Dynamics Near the Theorist”, Izv. Vyss. Uchebn. Zaved.-Prikl. Nelineynaya Din., 29:1 (2021), 88–135  mathnet  crossref  isi  scopus
    19. R. Su, Ch. Zhang, “Hopf-zero bifurcation of the ring unidirectionally coupled Toda oscillators with delay”, Nonlinear Anal.-Model Control, 26:3 (2021), 375–395  crossref  mathscinet  isi  scopus
    20. N. Stankevich, A. Kazakov, S. Gonchenko, “Scenarios of hyperchaos occurrence in 4D rossler system”, Chaos, 30:12 (2020), 123129  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:362
    References:70
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025