Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2018, Volume 23, Issue 1, Pages 80–101
DOI: https://doi.org/10.1134/S1560354718010070
(Mi rcd310)
 

This article is cited in 1 scientific paper (total in 1 paper)

Stability of the Polar Equilibria in a Restricted Three-body Problem on the Sphere

Jaime Andrade, Claudio Vidal

Universidad de Bío-Bío, Grupo de Investigación en Sistemas Dinámicos y Aplicaciones-GISDA, Casilla 5–C, Concepción, VIII–región, Chile
Citations (1)
References:
Abstract: In this paper we consider a symmetric restricted circular three-body problem on the surface $\mathbb{S}^2$ of constant Gaussian curvature $\kappa=1$. This problem consists in the description of the dynamics of an infinitesimal mass particle attracted by two primaries with identical masses, rotating with constant angular velocity in a fixed parallel of radius $a\in (0,1)$. It is verified that both poles of $\mathbb{S}^2$ are equilibrium points for any value of the parameter $a$. This problem is modeled through a Hamiltonian system of two degrees of freedom depending on the parameter $a$. Using results concerning nonlinear stability, the type of Lyapunov stability (nonlinear) is provided for the polar equilibria, according to the resonances. It is verified that for the north pole there are two values of bifurcation (on the stability) $a=\dfrac{\sqrt{4-\sqrt{2}}}{2}$ and $a=\sqrt{\dfrac{2}{3}}$, while the south pole has one value of bifurcation $a=\dfrac{\sqrt{3}}{2}$.
Keywords: circular restricted three-body problem on surfaces of constant curvature, Hamiltonian formulation, normal form, resonance, nonlinear stability.
Funding agency Grant number
Comisión Nacional de Investigación Científica y Tecnológica
Jaime Andrade was supported by a CONICYT fellowship (Chile).
Received: 01.10.2017
Accepted: 05.12.2017
Bibliographic databases:
Document Type: Article
MSC: 70F07, 70G60, 37D40
Language: English
Citation: Jaime Andrade, Claudio Vidal, “Stability of the Polar Equilibria in a Restricted Three-body Problem on the Sphere”, Regul. Chaotic Dyn., 23:1 (2018), 80–101
Citation in format AMSBIB
\Bibitem{AndVid18}
\by Jaime Andrade, Claudio Vidal
\paper Stability of the Polar Equilibria in a Restricted Three-body Problem on the Sphere
\jour Regul. Chaotic Dyn.
\yr 2018
\vol 23
\issue 1
\pages 80--101
\mathnet{http://mi.mathnet.ru/rcd310}
\crossref{https://doi.org/10.1134/S1560354718010070}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3759972}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000424267100007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85041394034}
Linking options:
  • https://www.mathnet.ru/eng/rcd310
  • https://www.mathnet.ru/eng/rcd/v23/i1/p80
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:637
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024