|
This article is cited in 1 scientific paper (total in 1 paper)
Lyapunov Orbits in the $n$-Vortex Problem on the Sphere
Adecarlos C. Carvalhoa, Hildeberto E. Cabralb a Departamento de Matemática, Universidade Federal do Maranhão,
av. dos Portugueses, 1966, Bacanga, São Luís, MA, Brasil
b Departamento de Matemática, Universidade Federal de Pernambuco, PVNS — UFS,
av. Olímpio Grande, s/n Itabaiana, SE, Brasil
Abstract:
In the phase space reduced by rotation, we prove the existence of periodic orbits of the $(n + 1)$-vortex problem emanating from a relative equilibrium formed by $n$ unit vortices at the vertices of a regular polygon at a fixed latitude and an additional vortex of intensity $\kappa$ at the north pole when the ideal fluid moves on the surface of a sphere.
Keywords:
point vortex problem, relative equilibria, periodic orbits, Lyapunov center theorem.
Received: 17.03.2015
Citation:
Adecarlos C. Carvalho, Hildeberto E. Cabral, “Lyapunov Orbits in the $n$-Vortex Problem on the Sphere”, Regul. Chaotic Dyn., 20:3 (2015), 234–246
Linking options:
https://www.mathnet.ru/eng/rcd31 https://www.mathnet.ru/eng/rcd/v20/i3/p234
|
Statistics & downloads: |
Abstract page: | 189 | References: | 55 |
|