Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2018, Volume 23, Issue 1, Pages 1–11
DOI: https://doi.org/10.1134/S156035471801001X
(Mi rcd304)
 

This article is cited in 1 scientific paper (total in 1 paper)

Uniform Boundedness of Iterates of Analytic Mappings Implies Linearization: a Simple Proof and Extensions

Rafael de la Llave

Georgia Institute of Technology, School of Mathematics, 686 Cherry St., Atlanta GA 30332-0160, USA
Citations (1)
References:
Abstract: A well-known result in complex dynamics shows that if the iterates of an analytic map are uniformly bounded in a complex domain, then the map is analytically conjugate to a linear map. We present a simple proof of this result in any dimension. We also present several generalizations and relations to other results in the literature.
Keywords: analytic maps, linearization.
Funding agency Grant number
National Science Foundation DMS-1500943
The work of the author was supported in part by NSF grant DMS-1500943.
Received: 11.09.2017
Accepted: 08.10.2017
Bibliographic databases:
Document Type: Article
MSC: 30D05, 37F50, 39-02
Language: English
Citation: Rafael de la Llave, “Uniform Boundedness of Iterates of Analytic Mappings Implies Linearization: a Simple Proof and Extensions”, Regul. Chaotic Dyn., 23:1 (2018), 1–11
Citation in format AMSBIB
\Bibitem{De 18}
\by Rafael de la Llave
\paper Uniform Boundedness of Iterates of Analytic Mappings Implies Linearization: a Simple Proof and Extensions
\jour Regul. Chaotic Dyn.
\yr 2018
\vol 23
\issue 1
\pages 1--11
\mathnet{http://mi.mathnet.ru/rcd304}
\crossref{https://doi.org/10.1134/S156035471801001X}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3759966}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000424267100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85041399115}
Linking options:
  • https://www.mathnet.ru/eng/rcd304
  • https://www.mathnet.ru/eng/rcd/v23/i1/p1
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024