Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2017, Volume 22, Issue 7, Pages 880–892
DOI: https://doi.org/10.1134/S1560354717070097
(Mi rcd297)
 

This article is cited in 2 scientific papers (total in 2 papers)

Stability of Equilibrium Points for a Hamiltonian Systems with One Degree of Freedom in One Degenerate Case

Rodrigo Gutierrez, Claudio Vidal

Departamento de Matemática, Facultad de Ciencias, Universidad del Bío-Bío, Casilla 5-C, Concepción, VIII-Región, Chile
Citations (2)
References:
Abstract: This paper concerns with the study of the stability of one equilibrium solution of an autonomous analytic Hamiltonian system in a neighborhood of the equilibrium point with $1$-degree of freedom in the degenerate case $H= q^4+ H_5+ H_6+\ldots$. Our main results complement the study initiated by Markeev in [9].
Keywords: Hamiltonian system, equilibrium solution, type of stability, normal form, critical cases, Lyapunov’s Theorem, Chetaev’s Theorem.
Received: 17.08.2017
Accepted: 04.12.2017
Bibliographic databases:
Document Type: Article
MSC: 37C75, 34D20, 34A25
Language: English
Citation: Rodrigo Gutierrez, Claudio Vidal, “Stability of Equilibrium Points for a Hamiltonian Systems with One Degree of Freedom in One Degenerate Case”, Regul. Chaotic Dyn., 22:7 (2017), 880–892
Citation in format AMSBIB
\Bibitem{GutVid17}
\by Rodrigo Gutierrez, Claudio Vidal
\paper Stability of Equilibrium Points for a Hamiltonian Systems with One Degree of Freedom in One Degenerate Case
\jour Regul. Chaotic Dyn.
\yr 2017
\vol 22
\issue 7
\pages 880--892
\mathnet{http://mi.mathnet.ru/rcd297}
\crossref{https://doi.org/10.1134/S1560354717070097}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000425980500009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042483855}
Linking options:
  • https://www.mathnet.ru/eng/rcd297
  • https://www.mathnet.ru/eng/rcd/v22/i7/p880
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:377
    References:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024