Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2017, Volume 22, Issue 7, Pages 824–839
DOI: https://doi.org/10.1134/S156035471707005X
(Mi rcd293)
 

This article is cited in 11 scientific papers (total in 11 papers)

On the Stability of a Class of Permanent Rotations of a Heavy Asymmetric Gyrostat

Manuel Iñarreaa, Víctor Lancharesa, Ana I. Pascuala, Antonio Elipeb

a Universidad La Rioja, Facultad de Ciencia y Tecnología, Madre de Dios 53, 26006 Logroño, Spain
b Centro Universitario de la Defensa de Zaragoza, Carretera de Huesca s/n, 50090 Zaragoza, Spain
Citations (11)
References:
Abstract: We consider the motion of an asymmetric gyrostat under the attraction of a uniform Newtonian field. It is supposed that the center of mass lies along one of the principal axes of inertia, while a rotor spins around a different axis of inertia. For this problem, we obtain the possible permanent rotations, that is, the equilibria of the system. The Lyapunov stability of these permanent rotations is analyzed by means of the Energy–Casimir method and necessary and sufficient conditions are derived, proving that there exist permanent stable rotations when the gyrostat is oriented in any direction of the space. The geometry of the gyrostat and the value of the gyrostatic momentum are relevant in order to get stable permanent rotations. Moreover, it seems that the necessary conditions are also sufficient, but this fact can only be proved partially.
Keywords: gyrostat rotation, stability, Energy–Casimir method.
Funding agency Grant number
Ministerio de Economía y Competitividad MTM2014-59433-C2-2-P
ESP2013-44217-R
Federación Española de Enfermedades Raras
This work has been partially supported by the Spanish Ministry of Economy, projects MTM2014-59433-C2-2-P and ESP2013-44217-R. A. E. also acknowledges support from the group E-48 of the Aragon Government and FEDER funds.
Received: 20.07.2017
Accepted: 22.08.2017
Bibliographic databases:
Document Type: Article
Language: English
Citation: Manuel Iñarrea, Víctor Lanchares, Ana I. Pascual, Antonio Elipe, “On the Stability of a Class of Permanent Rotations of a Heavy Asymmetric Gyrostat”, Regul. Chaotic Dyn., 22:7 (2017), 824–839
Citation in format AMSBIB
\Bibitem{InaLanPas17}
\by Manuel I\~narrea, V{\'\i}ctor Lanchares, Ana I. Pascual, Antonio Elipe
\paper On the Stability of a Class of Permanent Rotations of a Heavy Asymmetric Gyrostat
\jour Regul. Chaotic Dyn.
\yr 2017
\vol 22
\issue 7
\pages 824--839
\mathnet{http://mi.mathnet.ru/rcd293}
\crossref{https://doi.org/10.1134/S156035471707005X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000425980500005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042508362}
Linking options:
  • https://www.mathnet.ru/eng/rcd293
  • https://www.mathnet.ru/eng/rcd/v22/i7/p824
  • This publication is cited in the following 11 articles:
    1. Xue Zhong, Jie Zhao, Yunfeng Gao, Kaiping Yu, Hexi Baoyin, “Analytical solutions and stability of periodic attitude motions of gyrostat spacecrafts in weakly elliptical orbits”, Communications in Nonlinear Science and Numerical Simulation, 141 (2025), 108499  crossref
    2. Xue Zhong, Jie Zhao, Kaiping Yu, Minqiang Xu, “Stability Analysis of Resonant Rotation of a Gyrostat in an Elliptic Orbit Under Third- and Fourth-Order Resonances”, Regul. Chaotic Dyn., 28:2 (2023), 162–190  mathnet  crossref  mathscinet
    3. A. A. Burov, “Motion of a Variable Body with a Fixed Point in a Time-Dependent Force Field”, Mech. Solids, 58:8 (2023), 2750  crossref
    4. Jie Zhao, Xue Zhong, Kaiping Yu, Minqiang Xu, “Effect of gyroscopic moments on the attitude stability of a satellite in an elliptical orbit”, Nonlinear Dyn, 111:16 (2023), 14957  crossref
    5. A. A. Burov, “Motion of a Variable Body with a Fixed Point in a Time-dependent Force Field”, Prikladnaya matematika i mekhanika, 87:6 (2023), 984  crossref
    6. Anton V. Doroshin, Mikhail M. Krikunov, “The generalized method of phase trajectory curvature synthesis in spacecraft attitude dynamics tasks”, International Journal of Non-Linear Mechanics, 147 (2022), 104246  crossref
    7. Víctor Lanchares, Manuel Iñarrea, Ana Isabel Pascual, Antonio Elipe, “Stability Conditions for Permanent Rotations of a Heavy Gyrostat with Two Constant Rotors”, Mathematics, 10:11 (2022), 1882  crossref
    8. Vladimir S. Aslanov, Dmitry A. Sizov, “Chaotic pitch motion of an aerodynamically stabilized magnetic satellite in polar orbits”, Chaos, Solitons & Fractals, 164 (2022), 112718  crossref
    9. A. A. Elmandouh, F. H. Alsaad, “The stability of certain motion of a charged gyrostat in Newtonian force field”, Adv. Astron., 2021 (2021), 6660028  crossref  isi  scopus
    10. A. A. Elmandouh, A. G. Ibrahim, “Hamiltonian structure, equilibria, and stability for an axisymmetric gyrostat motion in the presence of gravity and magnetic fields”, Acta Mech., 230:7 (2019), 2539–2548  crossref  mathscinet  zmath  isi  scopus
    11. A. V. Doroshin, “Regimes of regular and chaotic motion of gyrostats in the central gravity field”, Commun. Nonlinear Sci. Numer. Simul., 69 (2019), 416–431  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:219
    References:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025