Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2015, Volume 20, Issue 4, Pages 476–485
DOI: https://doi.org/10.1134/S1560354715040061
(Mi rcd27)
 

This article is cited in 7 scientific papers (total in 7 papers)

A Kolmogorov Theorem for Nearly Integrable Poisson Systems with Asymptotically Decaying Time-dependent Perturbation

Alessandro Fortunati, Stephen Wiggins

School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom
Citations (7)
References:
Abstract: The aim of this paper is to prove the Kolmogorov theorem of persistence of Diophantine flows for nearly integrable Poisson systems associated to a real analytic Hamiltonian with aperiodic time dependence, provided that the perturbation is asymptotically vanishing. The paper is an extension of an analogous result by the same authors for canonical Hamiltonian systems; the flexibility of the Lie series method developed by A. Giorgilli et al. is profitably used in the present generalization.
Keywords: Poisson systems, Kolmogorov theorem, aperiodic time dependence.
Funding agency Grant number
Office of Naval Research N00014-01-1-076
Ministerio de Economía y Competitividad de España SEV-2011-0087
This research was supported by ONR Grant No. N00014-01-1-0769 and MINECO: ICMAT Severo Ochoa project SEV-2011-0087.
Received: 24.02.2015
Bibliographic databases:
Document Type: Article
MSC: 70H08, 37J40, 53D17
Language: English
Citation: Alessandro Fortunati, Stephen Wiggins, “A Kolmogorov Theorem for Nearly Integrable Poisson Systems with Asymptotically Decaying Time-dependent Perturbation”, Regul. Chaotic Dyn., 20:4 (2015), 476–485
Citation in format AMSBIB
\Bibitem{ForWig15}
\by Alessandro Fortunati, Stephen Wiggins
\paper A Kolmogorov Theorem for Nearly Integrable Poisson Systems with Asymptotically Decaying Time-dependent Perturbation
\jour Regul. Chaotic Dyn.
\yr 2015
\vol 20
\issue 4
\pages 476--485
\mathnet{http://mi.mathnet.ru/rcd27}
\crossref{https://doi.org/10.1134/S1560354715040061}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3376603}
\zmath{https://zbmath.org/?q=an:06507837}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015RCD....20..476F}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000358990500006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84938635704}
Linking options:
  • https://www.mathnet.ru/eng/rcd27
  • https://www.mathnet.ru/eng/rcd/v20/i4/p476
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024