Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2017, Volume 22, Issue 4, Pages 448–454
DOI: https://doi.org/10.1134/S1560354717040074
(Mi rcd265)
 

This article is cited in 1 scientific paper (total in 1 paper)

Symbolic Dynamics of Magnetic Bumps

Andreas Knaufa, Marcello Serib

a Department Mathematik, Universität Erlangen-Nürnberg, Cauerstraße 11, D–91058 Erlangen, Germany
b Department of Mathematics and Statistics, University of Reading, Whiteknights, PO Box 220, Reading RG6 6AX, United Kingdom
Citations (1)
References:
Abstract: For $n$ convex magnetic bumps in the plane, whose boundary has a curvature somewhat smaller than the absolute value of the constant magnetic field inside the bump, we construct a complete symbolic dynamics of a classical particle moving with speed one.
Keywords: magnetic billiards, symbolic dynamics, classical mechanics.
Received: 23.12.2016
Accepted: 10.07.2017
Bibliographic databases:
Document Type: Article
MSC: 37B10, 37J35
Language: English
Citation: Andreas Knauf, Marcello Seri, “Symbolic Dynamics of Magnetic Bumps”, Regul. Chaotic Dyn., 22:4 (2017), 448–454
Citation in format AMSBIB
\Bibitem{KnaSer17}
\by Andreas Knauf, Marcello Seri
\paper Symbolic Dynamics of Magnetic Bumps
\jour Regul. Chaotic Dyn.
\yr 2017
\vol 22
\issue 4
\pages 448--454
\mathnet{http://mi.mathnet.ru/rcd265}
\crossref{https://doi.org/10.1134/S1560354717040074}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000407398500007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85026860125}
Linking options:
  • https://www.mathnet.ru/eng/rcd265
  • https://www.mathnet.ru/eng/rcd/v22/i4/p448
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:466
    References:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024