Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2017, Volume 22, Issue 4, Pages 408–434
DOI: https://doi.org/10.1134/S1560354717040050
(Mi rcd263)
 

This article is cited in 9 scientific papers (total in 9 papers)

Periodic Orbits in the Restricted Three-body Problem and Arnold’s $J^+$-invariant

Kai Cieliebaka, Urs Frauenfeldera, Otto van Koertb

a Mathematisches Institut, Universität Augsburg, Universitätsstrasse 14, Augsburg, 86159 Germany
b Department of Mathematics and Research Institute of Mathematics, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, Seoul 08826, South Korea
Citations (9)
References:
Abstract: We apply Arnold’s theory of generic smooth plane curves to Stark–Zeeman systems. This is a class of Hamiltonian dynamical systems that describes the dynamics of an electron in an external electric and magnetic field, and includes many systems from celestial mechanics. Based on Arnold’s $J^+$-invariant, we introduce invariants of periodic orbits in planar Stark–Zeeman systems and study their behavior.
Keywords: generic immersions into the plane, Arnold’s plane curve invariants, restricted threebody problem.
Funding agency Grant number
Deutsche Forschungsgemeinschaft CI 45/8-1
FR 2637/2-1
National Research Foundation of Korea NRF-2016R1C1B2007662
K.C. was supported by DFG grant CI 45/8-1, U.F. by DFG grant FR 2637/2-1, and O.v.K. by NRF grant NRF-2016R1C1B2007662.
Received: 03.05.2017
Accepted: 26.06.2017
Bibliographic databases:
Document Type: Article
Language: English
Citation: Kai Cieliebak, Urs Frauenfelder, Otto van Koert, “Periodic Orbits in the Restricted Three-body Problem and Arnold’s $J^+$-invariant”, Regul. Chaotic Dyn., 22:4 (2017), 408–434
Citation in format AMSBIB
\Bibitem{CieFraVan17}
\by Kai Cieliebak, Urs Frauenfelder, Otto van Koert
\paper Periodic Orbits in the Restricted Three-body Problem and Arnold’s $J^+$-invariant
\jour Regul. Chaotic Dyn.
\yr 2017
\vol 22
\issue 4
\pages 408--434
\mathnet{http://mi.mathnet.ru/rcd263}
\crossref{https://doi.org/10.1134/S1560354717040050}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000407398500005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85026877239}
Linking options:
  • https://www.mathnet.ru/eng/rcd263
  • https://www.mathnet.ru/eng/rcd/v22/i4/p408
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:232
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024