Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2017, Volume 22, Issue 3, Pages 248–265
DOI: https://doi.org/10.1134/S1560354717030054
(Mi rcd255)
 

This article is cited in 1 scientific paper (total in 1 paper)

Nekhoroshev Estimates for Commuting Nearly Integrable Symplectomorphisms

Jinxin Xue

University of Chicago, Chicago, Il, 60637
Citations (1)
References:
Abstract: In this paper, we prove the Nekhoroshev estimates for commuting nearly integrable symplectomorphisms. We show quantitatively how $\mathbb{Z}^m$ symmetry improves the stability time. This result can be considered as a counterpart of Moser’s theorem [11] on simultaneous conjugation of commuting circle maps in the context of Nekhoroshev stability. We also discuss the possibility of Tits’ alternative for nearly integrable symplectomorphisms.
Keywords: Nekhoroshev estimates, commuting symplectomorphisms, generating functions, resonances.
Funding agency Grant number
National Science Foundation DMS-1500897
The author is supported by the NSF grant DMS-1500897.
Received: 20.02.2017
Accepted: 05.05.2017
Bibliographic databases:
Document Type: Article
MSC: 37J25, 37J40
Language: English
Citation: Jinxin Xue, “Nekhoroshev Estimates for Commuting Nearly Integrable Symplectomorphisms”, Regul. Chaotic Dyn., 22:3 (2017), 248–265
Citation in format AMSBIB
\Bibitem{Xue17}
\by Jinxin Xue
\paper Nekhoroshev Estimates for Commuting Nearly Integrable Symplectomorphisms
\jour Regul. Chaotic Dyn.
\yr 2017
\vol 22
\issue 3
\pages 248--265
\mathnet{http://mi.mathnet.ru/rcd255}
\crossref{https://doi.org/10.1134/S1560354717030054}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3658424}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000402746300005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85020193970}
Linking options:
  • https://www.mathnet.ru/eng/rcd255
  • https://www.mathnet.ru/eng/rcd/v22/i3/p248
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:168
    References:54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024