Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2017, Volume 22, Issue 2, Pages 180–196
DOI: https://doi.org/10.1134/S156035471702006X
(Mi rcd250)
 

This article is cited in 10 scientific papers (total in 10 papers)

The Hess–Appelrot Case and Quantization of the Rotation Number

Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev

Steklov Mathematical Institute, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
Citations (10)
References:
Abstract: This paper is concerned with the Hess case in the Euler–Poisson equations and with its generalization on the pencil of Poisson brackets. It is shown that in this case the problem reduces to investigating the vector field on a torus and that the graph showing the dependence of the rotation number on parameters has horizontal segments (limit cycles) only for integer values of the rotation number. In addition, an example of a Hamiltonian system is given which possesses an invariant submanifold (similar to the Hess case), but on which the dependence of the rotation number on parameters is a Cantor ladder.
Keywords: invariant submanifold, rotation number, Cantor ladder, limit cycles.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work was supported by the Russian Science Foundation (project 14-50-00005).
Received: 02.02.2017
Accepted: 06.03.2017
Bibliographic databases:
Document Type: Article
MSC: 70E17, 37E45
Language: English
Citation: Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “The Hess–Appelrot Case and Quantization of the Rotation Number”, Regul. Chaotic Dyn., 22:2 (2017), 180–196
Citation in format AMSBIB
\Bibitem{BizBorMam17}
\by Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev
\paper The Hess–Appelrot Case and Quantization of the Rotation Number
\jour Regul. Chaotic Dyn.
\yr 2017
\vol 22
\issue 2
\pages 180--196
\mathnet{http://mi.mathnet.ru/rcd250}
\crossref{https://doi.org/10.1134/S156035471702006X}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3631898}
\zmath{https://zbmath.org/?q=an:1370.70023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000398060800006}
\elib{https://elibrary.ru/item.asp?id=29497720}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85016971181}
Linking options:
  • https://www.mathnet.ru/eng/rcd250
  • https://www.mathnet.ru/eng/rcd/v22/i2/p180
  • This publication is cited in the following 10 articles:
    1. Alexey Glutsyuk, “On germs of constriction curves in model of overdamped Josephson junction, dynamical isomonodromic foliation and Painlevé 3 equation”, Mosc. Math. J., 23:4 (2023), 479–513  mathnet
    2. Y Bibilo, A A Glutsyuk, “On families of constrictions in model of overdamped Josephson junction and Painlevé 3 equation*”, Nonlinearity, 35:10 (2022), 5427  crossref
    3. Alexander A. Burov, Anna D. Guerman, Vasily I. Nikonov, “Asymptotic Invariant Surfaces for Non-Autonomous Pendulum-Type Systems”, Regul. Chaotic Dyn., 25:1 (2020), 121–130  mathnet  crossref
    4. O. V. Kholostova, “On the Dynamics of a Rigid Body in the Hess Case at High-Frequency Vibrations of a Suspension Point”, Rus. J. Nonlin. Dyn., 16:1 (2020), 59–84  mathnet  crossref  elib
    5. I. A. Bizyaev, I. S. Mamaev, “Dynamics of the nonholonomic Suslov problem under periodic control: unbounded speedup and strange attractors”, J. Phys. A-Math. Theor., 53:18 (2020), 185701  crossref  mathscinet  isi  scopus
    6. Vyacheslav P. Kruglov, Sergey P. Kuznetsov, “Topaj – Pikovsky Involution in the Hamiltonian Lattice of Locally Coupled Oscillators”, Regul. Chaotic Dyn., 24:6 (2019), 725–738  mathnet  crossref  mathscinet
    7. H. Zoladek, “Perturbations of the Hess-Appelrot and the Lagrange cases in the rigid body dynamics”, J. Geom. Phys., 142 (2019), 121–136  crossref  mathscinet  zmath  isi  scopus
    8. A. Borisov, A. Kilin, I. Mamaev, “Invariant submanifolds of genus 5 and a Cantor staircase in the nonholonomic model of a snakeboard”, Int. J. Bifurcation Chaos, 29:3 (2019), 1930008  crossref  mathscinet  zmath  isi  scopus
    9. A. Borisov, I. Mamaev, “Rigid body dynamics”, Rigid Body Dynamics, de Gruyter Studies in Mathematical Physics, 52, Walter de Gruyter Gmbh, 2019, 1–520  mathscinet  isi
    10. Ol'shanskii V.Yu., “Partial Linear Integrals of the Poincaré-Zhukovskii Equations (the General Case)”, Pmm-J. Appl. Math. Mech., 81:4 (2017), 270–285  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:331
    References:81
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025