Processing math: 100%
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2017, Volume 22, Issue 1, Pages 54–77
DOI: https://doi.org/10.1134/S156035471701004X
(Mi rcd243)
 

This article is cited in 26 scientific papers (total in 26 papers)

Secular Dynamics of a Planar Model of the Sun-Jupiter-Saturn-Uranus System; Effective Stability in the Light of Kolmogorov and Nekhoroshev Theories

Antonio Giorgillia, Ugo Locatellib, Marco Sansotteraa

a Dipartimento di Matematica, Università degli Studi di Milano, via Saldini 50, 20133, Milano, Italy
b Dipartimento di Matematica, Università degli Studi di Roma ''Tor Vergata'', via della Ricerca Scientifica 1, 00133, Roma, Italy
Citations (26)
References:
Abstract: We investigate the long-time stability of the Sun-Jupiter-Saturn-Uranus system by considering a planar secular model, which can be regarded as a major refinement of the approach first introduced by Lagrange. Indeed, concerning the planetary orbital revolutions, we improve the classical circular approximation by replacing it with a solution that is invariant up to order two in the masses; therefore, we investigate the stability of the secular system for rather small values of the eccentricities. First, we explicitly construct a Kolmogorov normal form to find an invariant KAM torus which approximates very well the secular orbits. Finally, we adapt the approach that underlies the analytic part of Nekhoroshev’s theorem to show that there is a neighborhood of that torus for which the estimated stability time is larger than the lifetime of the Solar System. The size of such a neighborhood, compared with the uncertainties of the astronomical observations, is about ten times smaller.
Keywords: n-body planetary problem, KAM theory, Nekhoroshev theory, normal form methods, exponential stability, Hamiltonian systems, celestial mechanics.
Funding agency Grant number
Italian Ministry of Education, University and Research PRIN 2010JJ4KPA009
This work has been supported by the research program “Teorie geometriche e analitiche dei sistemi Hamiltoniani in dimensioni finite e infinite”, PRIN 2010JJ4KPA009, financed by MIUR.
Received: 03.10.2016
Accepted: 20.12.2016
Bibliographic databases:
Document Type: Article
Language: English
Citation: Antonio Giorgilli, Ugo Locatelli, Marco Sansottera, “Secular Dynamics of a Planar Model of the Sun-Jupiter-Saturn-Uranus System; Effective Stability in the Light of Kolmogorov and Nekhoroshev Theories”, Regul. Chaotic Dyn., 22:1 (2017), 54–77
Citation in format AMSBIB
\Bibitem{GioLocSan17}
\by Antonio Giorgilli, Ugo Locatelli, Marco Sansottera
\paper Secular Dynamics of a Planar Model of the Sun-Jupiter-Saturn-Uranus System; Effective Stability in the Light of Kolmogorov and Nekhoroshev Theories
\jour Regul. Chaotic Dyn.
\yr 2017
\vol 22
\issue 1
\pages 54--77
\mathnet{http://mi.mathnet.ru/rcd243}
\crossref{https://doi.org/10.1134/S156035471701004X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000394354800004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85012180658}
Linking options:
  • https://www.mathnet.ru/eng/rcd243
  • https://www.mathnet.ru/eng/rcd/v22/i1/p54
  • This publication is cited in the following 26 articles:
    1. A. N. Prokopenya, M. Zh. Minglibayev, M. R. Saparova, “Symbolic Calculations in the Study of Secular Perturbations in the Many-Body Problem with Variable Masses”, Program Comput Soft, 51:1 (2025), 32  crossref
    2. Rita Mastroianni, Ugo Locatelli, “Computer-assisted proofs of existence of KAM tori in planetary dynamical models of υ-And b”, Communications in Nonlinear Science and Numerical Simulation, 130 (2024), 107706  crossref
    3. Chiara Caracciolo, Ugo Locatelli, Marco Sansottera, Mara Volpi, “3D Orbital Architecture of Exoplanetary Systems: KAM-Stability Analysis”, Regul. Chaotic Dyn., 29:4 (2024), 565–582  mathnet  crossref
    4. Veronica Danesi, Ugo Locatelli, Marco Sansottera, “Existence proof of librational invariant tori in an averaged model of HD60532 planetary system”, Celest Mech Dyn Astron, 135:3 (2023)  crossref
    5. Alessandra Celletti, “From infinite to finite time stability in Celestial Mechanics and Astrodynamics”, Astrophys Space Sci, 368:12 (2023)  crossref
    6. Rita Mastroianni, Ugo Locatelli, “Secular orbital dynamics of the innermost exoplanet of the $\upsilon $-Andromedæ system”, Celest Mech Dyn Astron, 135:3 (2023)  crossref
    7. Marco Sansottera, Veronica Danesi, “Kolmogorov variation: KAM with knobs (à la Kolmogorov)”, MINE, 5:5 (2023), 1  crossref
    8. Caracciolo Ch., Locatelli U., Sansottera M., Volpi M., “Librational Kam Tori in the Secular Dynamics of the Nu Andromedae Planetary System”, Mon. Not. Roy. Astron. Soc., 510:2 (2022), 2147–2166  crossref  isi  scopus
    9. Ugo Locatelli, Chiara Caracciolo, Marco Sansottera, Mara Volpi, Springer Proceedings in Mathematics & Statistics, 399, New Frontiers of Celestial Mechanics: Theory and Applications, 2022, 1  crossref
    10. Lorenzo Valvo, Ugo Locatelli, “Hamiltonian control of magnetic field lines: Computer assisted results proving the existence of KAM barriers”, JCD, 9:4 (2022), 505  crossref
    11. Àngel Jorba, Encyclopedia of Complexity and Systems Science Series, Perturbation Theory, 2022, 153  crossref
    12. Àngel Jorba, Encyclopedia of Complexity and Systems Science, 2022, 1  crossref
    13. Jérôme Daquin, Sara Di Ruzza, Gabriella Pinzari, Springer Proceedings in Mathematics & Statistics, 399, New Frontiers of Celestial Mechanics: Theory and Applications, 2022, 47  crossref
    14. Ch. Caracciolo, U. Locatelli, “Elliptic tori in FPU non-linear chains with a small number of nodes”, Commun. Nonlinear Sci. Numer. Simul., 97 (2021), 105759  crossref  mathscinet  isi  scopus
    15. S. Di Ruzza, J. Daquin, G. Pinzari, “Symbolic dynamics in a binary asteroid system”, Commun. Nonlinear Sci. Numer. Simul., 91 (2020), 105414  crossref  mathscinet  zmath  isi  scopus
    16. A. Perminov, E. Kuznetsov, “The orbital evolution of the sun-jupiter-saturn-uranus-neptune system on long time scales”, Astrophys. Space Sci., 365:8 (2020), 144  crossref  mathscinet  isi  scopus
    17. A. Yalinewich, C. Petrovich, “Nekhoroshev estimates for the survival time of tightly packed planetary systems”, Astrophys. J. Lett., 892:1 (2020), L11  crossref  isi  scopus
    18. S. Barbieri, L. Niederman, “Sharp nekhoroshev estimates for the three-body problem around periodic orbits”, J. Differ. Equ., 268:7 (2020), 3749–3780  crossref  mathscinet  zmath  isi  scopus
    19. Ivan I. Shevchenko, Astrophysics and Space Science Library, 463, Dynamical Chaos in Planetary Systems, 2020, 235  crossref
    20. M. Sansottera, A.-S. Libert, “Resonant Laplace-Lagrange theory for extrasolar systems in mean-motion resonance”, Celest. Mech. Dyn. Astron., 131:8 (2019), 38  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:262
    References:73
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025