Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2017, Volume 22, Issue 1, Pages 18–26
DOI: https://doi.org/10.1134/S1560354717010026
(Mi rcd241)
 

This article is cited in 4 scientific papers (total in 4 papers)

Nekhoroshev Theorem for Perturbations of the Central Motion

Dario Bambusi, Alessandra Fusè

Dipartimento di Matematica, Università degli Studi di Milano, Via Saldini 50, I-20133 Milano
Citations (4)
References:
Abstract: In this paper we prove a Nekhoroshev type theorem for perturbations of Hamiltonians describing a particle subject to the force due to a central potential. Precisely, we prove that under an explicit condition on the potential, the Hamiltonian of the central motion is quasiconvex. Thus, when it is perturbed, two actions (the modulus of the total angular momentum and the action of the reduced radial system) are approximately conserved for times which are exponentially long with the inverse of the perturbation parameter.
Keywords: Nekhoroshev theorem, central motion, Hamiltonian dynamics.
Received: 30.09.2016
Accepted: 16.12.2016
Bibliographic databases:
Document Type: Article
MSC: 37J40, 70H09
Language: English
Citation: Dario Bambusi, Alessandra Fusè, “Nekhoroshev Theorem for Perturbations of the Central Motion”, Regul. Chaotic Dyn., 22:1 (2017), 18–26
Citation in format AMSBIB
\Bibitem{BamFus17}
\by Dario Bambusi, Alessandra Fus\`e
\paper Nekhoroshev Theorem for Perturbations of the Central Motion
\jour Regul. Chaotic Dyn.
\yr 2017
\vol 22
\issue 1
\pages 18--26
\mathnet{http://mi.mathnet.ru/rcd241}
\crossref{https://doi.org/10.1134/S1560354717010026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000394354800002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85012195665}
Linking options:
  • https://www.mathnet.ru/eng/rcd241
  • https://www.mathnet.ru/eng/rcd/v22/i1/p18
  • This publication is cited in the following 4 articles:
    1. Dario Bambusi, Beatrice Langella, Marc Rouveyrol, “On the Stable Eigenvalues of Perturbed Anharmonic Oscillators in Dimension Two”, Commun. Math. Phys., 390:1 (2022), 309  crossref
    2. I. De Blasi, A. Celletti, Ch. Efthymiopoulos, “Semi-analytical estimates for the orbital stability of Earth's satellites”, J. Nonlinear Sci., 31:6 (2021), 93  crossref  mathscinet  isi  scopus
    3. L. Mi, W. Cui, H. You, “Periodic and quasi-periodic solutions for the complex swift-hohenberg equation”, J. Appl. Anal. Comput., 10:1 (2020), 297–313  crossref  mathscinet  zmath  isi  scopus
    4. Dario Bambusi, Alessandra Fusè, Marco Sansottera, “Exponential Stability in the Perturbed Central Force Problem”, Regul. Chaotic Dyn., 23:7-8 (2018), 821–841  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:172
    References:49
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025