Abstract:
The main goal of this research is to examine any peculiarities and special modes observed in the dynamics of a system of two nonlinearly coupled pendulums. In addition to steady states, an in-phase rotation limit cycle is proved to exist in the system with both damping and constant external force. This rotation mode is numerically shown to become unstable for certain values of the coupling strength. We also present an asymptotic theory developed for an infinitely small dissipation, which explains why the in-phase rotation limit cycle loses its stability. Boundaries of the instability domain mentioned above are found analytically. As a result of numerical studies, a whole range of the coupling parameter values is found for the case where the system has more than one rotation limit cycle. There exist not only a stable in-phase cycle, but also two out-of phase ones: a stable rotation limit cycle and an unstable one. Bistability of the limit periodic mode is, therefore, established for the system of two nonlinearly coupled pendulums. Bifurcations that lead to the appearance and disappearance of the out-ofphase limit regimes are discussed as well.
This research was supported by the Russian Science Foundation (Project No 14-12-00811, theoretical part) and by the Federal Target Program “Research and Development in Priority Areas of the Development of the Scientific and Technological Complex of Russia for 2014–2020” of the Ministry of Education and Science of Russia (Project ID RFMEFI57514X0031 Contract No 14.575.21.0031, numerical part).
Citation:
Lev A. Smirnov, Alexey K. Kryukov, Grigory V. Osipov, Jürgen Kurths, “Bistability of Rotational Modes in a System of Coupled Pendulums”, Regul. Chaotic Dyn., 21:7-8 (2016), 849–861
\Bibitem{SmiKryOsi16}
\by Lev A. Smirnov, Alexey K. Kryukov, Grigory V. Osipov, J\"urgen Kurths
\paper Bistability of Rotational Modes in a System of Coupled Pendulums
\jour Regul. Chaotic Dyn.
\yr 2016
\vol 21
\issue 7-8
\pages 849--861
\mathnet{http://mi.mathnet.ru/rcd231}
\crossref{https://doi.org/10.1134/S156035471607008X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000403091800008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85015989557}
Linking options:
https://www.mathnet.ru/eng/rcd231
https://www.mathnet.ru/eng/rcd/v21/i7/p849
This publication is cited in the following 10 articles: