Typesetting math: 100%
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2016, Volume 21, Issue 7-8, Pages 792–803
DOI: https://doi.org/10.1134/S1560354716070029
(Mi rcd225)
 

This article is cited in 23 scientific papers (total in 23 papers)

Regular and Chaotic Motions of a Chaplygin Sleigh under Periodic Pulsed Torque Impacts

Alexey V. Borisovab, Sergey P. Kuznetsova

a Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia
b Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudnyi, 141700 Russia
Citations (23)
References:
Abstract: For a Chaplygin sleigh on a plane, which is a paradigmatic system of nonholonomic mechanics, we consider dynamics driven by periodic pulses of supplied torque depending on the instant spatial orientation of the sleigh. Additionally, we assume that a weak viscous force and moment affect the sleigh in time intervals between the pulses to provide sustained modes of the motion associated with attractors in the reduced three-dimensional phase space (velocity, angular velocity, rotation angle). The developed discrete version of the problem of the Chaplygin sleigh is an analog of the classical Chirikov map appropriate for the nonholonomic situation. We demonstrate numerically, discuss and classify dynamical regimes depending on the parameters, including regular motions and diffusive-like random walks associated, respectively, with regular and chaotic attractors in the reduced momentum dynamical equations.
Keywords: Chaplygin sleigh, nonholonomic mechanics, attractor, chaos, bifurcation.
Funding agency Grant number
Russian Science Foundation 15-12-20035
This work was supported by the grant of the Russian Science Foundation No 15-12-20035.
Received: 26.10.2016
Accepted: 05.12.2016
Bibliographic databases:
Document Type: Article
Language: English
Citation: Alexey V. Borisov, Sergey P. Kuznetsov, “Regular and Chaotic Motions of a Chaplygin Sleigh under Periodic Pulsed Torque Impacts”, Regul. Chaotic Dyn., 21:7-8 (2016), 792–803
Citation in format AMSBIB
\Bibitem{BorKuz16}
\by Alexey V. Borisov, Sergey P. Kuznetsov
\paper Regular and Chaotic Motions of a Chaplygin Sleigh under Periodic Pulsed Torque Impacts
\jour Regul. Chaotic Dyn.
\yr 2016
\vol 21
\issue 7-8
\pages 792--803
\mathnet{http://mi.mathnet.ru/rcd225}
\crossref{https://doi.org/10.1134/S1560354716070029}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000403091800002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85015983720}
Linking options:
  • https://www.mathnet.ru/eng/rcd225
  • https://www.mathnet.ru/eng/rcd/v21/i7/p792
  • This publication is cited in the following 23 articles:
    1. L. A. Klimina, E. S. Shalimova, “On the Skating Motion of a Robot Controlled by an Internal Flywheel”, J. Comput. Syst. Sci. Int., 62:3 (2023), 597  crossref
    2. L. A. Klimina, E. S. Shalimova, “O DVIZhENII NA KONKAKh ROBOTA, UPRAVLYaEMOGO VNUTRENNIM MAKhOVIKOM”, Izvestiya Rossiiskoi akademii nauk. Teoriya i sistemy upravleniya, 2023, no. 4, 168  crossref
    3. Meghan Rhodes, Vakhtang Putkaradze, “Trajectory tracing in figure skating”, Nonlinear Dyn, 110:4 (2022), 3031  crossref
    4. Roberto Marchello, Marco Morandotti, Henry Shum, Marta Zoppello, “The N-Link Swimmer in Three Dimensions: Controllability and Optimality Results”, Acta Appl Math, 178:1 (2022)  crossref
    5. S. P. Kuznetsov, V. P. Kruglov, A. V. Borisov, “Chaplygin sleigh in the quadratic potential field”, EPL, 132:2 (2020), 20008  crossref  isi  scopus
    6. N. Sansonetto, M. Zoppello, “On the trajectory generation of the hydrodynamic Chaplygin sleigh”, IEEE Control Syst. Lett., 4:4 (2020), 922–927  crossref  mathscinet  isi  scopus
    7. E. V. Vetchanin, I. S. Mamaev, “Asymptotic behavior in the dynamics of a smooth body in an ideal fluid”, Acta Mech., 231:11 (2020), 4529–4535  crossref  mathscinet  zmath  isi  scopus
    8. E. V. Vetchanin, E. A. Mikishanina, “Vibrational Stability of Periodic Solutions of the Liouville Equations”, Rus. J. Nonlin. Dyn., 15:3 (2019), 351–363  mathnet  crossref  mathscinet
    9. A. V. Borisov, E. V. Vetchanin, I. S. Mamaev, “Motion of a smooth foil in a fluid under the action of external periodic forces. I”, Russ. J. Math. Phys., 26:4 (2019), 412–427  crossref  mathscinet  zmath  isi  scopus
    10. I. A. Bizyaev, A. V. Borisov, V. V. Kozlov, I. S. Mamaev, “Fermi-like acceleration and power-law energy growth in nonholonomic systems”, Nonlinearity, 32:9 (2019), 3209–3233  crossref  mathscinet  zmath  isi  scopus
    11. B. Gajic, B. Jovanovic, “Nonholonomic connections, time reparametrizations, and integrability of the rolling ball over a sphere”, Nonlinearity, 32:5 (2019), 1675–1694  crossref  mathscinet  zmath  isi  scopus
    12. I. A. Bizyaev, A. V. Borisov, S. P. Kuznetsov, “The Chaplygin sleigh with friction moving due to periodic oscillations of an internal mass”, Nonlinear Dyn., 95:1 (2019), 699–714  crossref  isi  scopus
    13. V. Fedonyuk, Ph. Tallapragada, “Sinusoidal control and limit cycle analysis of the dissipative Chaplygin sleigh”, Nonlinear Dyn., 93:2 (2018), 835–846  crossref  isi  scopus
    14. Sergey P. Kuznetsov, “Regular and Chaotic Dynamics of a Chaplygin Sleigh due to Periodic Switch of the Nonholonomic Constraint”, Regul. Chaotic Dyn., 23:2 (2018), 178–192  mathnet  crossref
    15. Alexey V. Borisov, Sergey P. Kuznetsov, “Comparing Dynamics Initiated by an Attached Oscillating Particle for the Nonholonomic Model of a Chaplygin Sleigh and for a Model with Strong Transverse and Weak Longitudinal Viscous Friction Applied at a Fixed Point on the Body”, Regul. Chaotic Dyn., 23:7-8 (2018), 803–820  mathnet  crossref
    16. Alexey V. Borisov, Ivan S. Mamaev, “An Inhomogeneous Chaplygin Sleigh”, Regul. Chaotic Dyn., 22:4 (2017), 435–447  mathnet  crossref  mathscinet
    17. Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “The Chaplygin Sleigh with Parametric Excitation: Chaotic Dynamics and Nonholonomic Acceleration”, Regul. Chaotic Dyn., 22:8 (2017), 955–975  mathnet  crossref
    18. I. A. Bizyaev, A. V. Borisov, S. P. Kuznetsov, “Chaplygin sleigh with periodically oscillating internal mass”, EPL, 119:6 (2017), 60008  crossref  isi
    19. S. P. Kuznetsov, “Regular and chaotic motions of the Chaplygin sleigh with periodically switched location of nonholonomic constraint”, EPL, 118:1 (2017), 10007  crossref  mathscinet  isi  scopus
    20. A. V. Borisov, I. S. Mamaev, “Neodnorodnye sani Chaplygina”, Nelineinaya dinam., 13:4 (2017), 625–639  mathnet  crossref  mathscinet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:289
    References:76
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025