Abstract:
For a Chaplygin sleigh on a plane, which is a paradigmatic system of nonholonomic mechanics, we consider dynamics driven by periodic pulses of supplied torque depending on the instant spatial orientation of the sleigh. Additionally, we assume that a weak viscous force and moment affect the sleigh in time intervals between the pulses to provide sustained modes of the motion associated with attractors in the reduced three-dimensional phase space (velocity, angular velocity, rotation angle). The developed discrete version of the problem of the Chaplygin sleigh is an analog of the classical Chirikov map appropriate for the nonholonomic situation. We demonstrate numerically, discuss and classify dynamical regimes depending on the parameters, including regular motions and diffusive-like random walks associated, respectively, with regular and chaotic attractors in the reduced momentum dynamical equations.
Citation:
Alexey V. Borisov, Sergey P. Kuznetsov, “Regular and Chaotic Motions of a Chaplygin Sleigh under Periodic Pulsed Torque Impacts”, Regul. Chaotic Dyn., 21:7-8 (2016), 792–803
\Bibitem{BorKuz16}
\by Alexey V. Borisov, Sergey P. Kuznetsov
\paper Regular and Chaotic Motions of a Chaplygin Sleigh under Periodic Pulsed Torque Impacts
\jour Regul. Chaotic Dyn.
\yr 2016
\vol 21
\issue 7-8
\pages 792--803
\mathnet{http://mi.mathnet.ru/rcd225}
\crossref{https://doi.org/10.1134/S1560354716070029}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000403091800002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85015983720}
Linking options:
https://www.mathnet.ru/eng/rcd225
https://www.mathnet.ru/eng/rcd/v21/i7/p792
This publication is cited in the following 23 articles:
L. A. Klimina, E. S. Shalimova, “On the Skating Motion of a Robot Controlled by an Internal Flywheel”, J. Comput. Syst. Sci. Int., 62:3 (2023), 597
L. A. Klimina, E. S. Shalimova, “O DVIZhENII NA KONKAKh ROBOTA, UPRAVLYaEMOGO VNUTRENNIM MAKhOVIKOM”, Izvestiya Rossiiskoi akademii nauk. Teoriya i sistemy upravleniya, 2023, no. 4, 168
Roberto Marchello, Marco Morandotti, Henry Shum, Marta Zoppello, “The N-Link Swimmer in Three Dimensions: Controllability and Optimality Results”, Acta Appl Math, 178:1 (2022)
S. P. Kuznetsov, V. P. Kruglov, A. V. Borisov, “Chaplygin sleigh in the quadratic potential field”, EPL, 132:2 (2020), 20008
N. Sansonetto, M. Zoppello, “On the trajectory generation of the hydrodynamic Chaplygin sleigh”, IEEE Control Syst. Lett., 4:4 (2020), 922–927
E. V. Vetchanin, I. S. Mamaev, “Asymptotic behavior in the dynamics of a smooth body in an ideal fluid”, Acta Mech., 231:11 (2020), 4529–4535
E. V. Vetchanin, E. A. Mikishanina, “Vibrational Stability of Periodic Solutions of the Liouville Equations”, Rus. J. Nonlin. Dyn., 15:3 (2019), 351–363
A. V. Borisov, E. V. Vetchanin, I. S. Mamaev, “Motion of a smooth foil in a fluid under the action of external periodic forces. I”, Russ. J. Math. Phys., 26:4 (2019), 412–427
I. A. Bizyaev, A. V. Borisov, V. V. Kozlov, I. S. Mamaev, “Fermi-like acceleration and power-law energy growth in nonholonomic systems”, Nonlinearity, 32:9 (2019), 3209–3233
B. Gajic, B. Jovanovic, “Nonholonomic connections, time reparametrizations, and integrability of the rolling ball over a sphere”, Nonlinearity, 32:5 (2019), 1675–1694
I. A. Bizyaev, A. V. Borisov, S. P. Kuznetsov, “The Chaplygin sleigh with friction moving due to periodic oscillations of an internal mass”, Nonlinear Dyn., 95:1 (2019), 699–714
V. Fedonyuk, Ph. Tallapragada, “Sinusoidal control and limit cycle analysis of the dissipative Chaplygin sleigh”, Nonlinear Dyn., 93:2 (2018), 835–846
Sergey P. Kuznetsov, “Regular and Chaotic Dynamics of a Chaplygin Sleigh due to Periodic Switch of the Nonholonomic Constraint”, Regul. Chaotic Dyn., 23:2 (2018), 178–192
Alexey V. Borisov, Sergey P. Kuznetsov, “Comparing Dynamics Initiated by an Attached Oscillating Particle for the Nonholonomic Model of a Chaplygin Sleigh and for a Model with Strong Transverse and Weak Longitudinal Viscous Friction Applied at a Fixed Point on the Body”, Regul. Chaotic Dyn., 23:7-8 (2018), 803–820
Alexey V. Borisov, Ivan S. Mamaev, “An Inhomogeneous Chaplygin Sleigh”, Regul. Chaotic Dyn., 22:4 (2017), 435–447
Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “The Chaplygin Sleigh with Parametric Excitation: Chaotic Dynamics and Nonholonomic Acceleration”, Regul. Chaotic Dyn., 22:8 (2017), 955–975
I. A. Bizyaev, A. V. Borisov, S. P. Kuznetsov, “Chaplygin sleigh with periodically oscillating internal mass”, EPL, 119:6 (2017), 60008
S. P. Kuznetsov, “Regular and chaotic motions of the Chaplygin sleigh with periodically switched location of nonholonomic constraint”, EPL, 118:1 (2017), 10007
A. V. Borisov, I. S. Mamaev, “Neodnorodnye sani Chaplygina”, Nelineinaya dinam., 13:4 (2017), 625–639