Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2015, Volume 20, Issue 5, Pages 605–626
DOI: https://doi.org/10.1134/S1560354715050056
(Mi rcd22)
 

This article is cited in 30 scientific papers (total in 30 papers)

Dynamics of the Suslov Problem in a Gravitational Field: Reversal and Strange Attractors

Ivan A. Bizyaevab, Alexey V. Borisovb, Alexey O. Kazakovac

a Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia
b Steklov Mathematical Institute, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
c National Research University Higher School of Economics, ul. Rodionova 136, Nizhny Novgorod, 603093 Russia
Citations (30)
References:
Abstract: In this paper, we present some results on chaotic dynamics in the Suslov problem which describe the motion of a heavy rigid body with a fixed point, subject to a nonholonomic constraint, which is expressed by the condition that the projection of angular velocity onto the body-fixed axis is equal to zero. Depending on the system parameters, we find cases of regular (in particular, integrable) behavior and detect various attracting sets (including strange attractors) that are typical of dissipative systems. We construct a chart of regimes with regions characterizing chaotic and regular regimes depending on the degree of conservativeness. We examine in detail the effect of reversal, which was observed previously in the motion of rattlebacks.
Keywords: Suslov problem, nonholonomic constraint, reversal, strange attractor.
Funding agency Grant number
Russian Science Foundation 14-50-00005
15-12-20035
Russian Foundation for Basic Research 15-38-20879 mol_a_ved
15-08-09261-a
Sections 1, 3 and 7 were prepared by A.V. Borisov under the RSF grant No. 14-50-00005. Sections 2 and 5 were prepared by I.A. Bizyaev within the framework of the RFBR grants No. 15-38-20879 mol_a_ved and No. 15-08-09261-a. The work of A.O. Kazakov (Sections 4 and 6) was supported by RSF grant No. 15-12-20035.
Received: 14.08.2015
Bibliographic databases:
Document Type: Article
Language: English
Citation: Ivan A. Bizyaev, Alexey V. Borisov, Alexey O. Kazakov, “Dynamics of the Suslov Problem in a Gravitational Field: Reversal and Strange Attractors”, Regul. Chaotic Dyn., 20:5 (2015), 605–626
Citation in format AMSBIB
\Bibitem{BizBorKaz15}
\by Ivan A. Bizyaev, Alexey V. Borisov, Alexey O. Kazakov
\paper Dynamics of the Suslov Problem in a Gravitational Field: Reversal and Strange Attractors
\jour Regul. Chaotic Dyn.
\yr 2015
\vol 20
\issue 5
\pages 605--626
\mathnet{http://mi.mathnet.ru/rcd22}
\crossref{https://doi.org/10.1134/S1560354715050056}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3412546}
\zmath{https://zbmath.org/?q=an:06529975}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000362971400005}
\elib{https://elibrary.ru/item.asp?id=24961859}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944459733}
Linking options:
  • https://www.mathnet.ru/eng/rcd22
  • https://www.mathnet.ru/eng/rcd/v20/i5/p605
    Translation
    This publication is cited in the following 30 articles:
    1. Anastasiia A. Emelianova, Vladimir I. Nekorkin, “Synchronization and Chaos in Adaptive Kuramoto Networks with Higher-Order Interactions: A Review”, Regul. Chaotic Dyn., 30:1 (2025), 57–75  mathnet  crossref
    2. S. V. Gonchenko, A. S. Gonchenko, A. O. Kazakov, E. A. Samylina, “Smeshannaya dinamika: elementy teorii i primery”, Izvestiya vuzov. PND, 32:6 (2024), 722–765  mathnet  crossref
    3. Alexander A. Kilin, Elena N. Pivovarova, “Dynamics of an Unbalanced Disk with a Single Nonholonomic Constraint”, Regul. Chaotic Dyn., 28:1 (2023), 78–106  mathnet  crossref  mathscinet
    4. D.S. Shchapin, A.A. Emelianova, V.I. Nekorkin, “A chaotic oscillation generator based on mixed dynamics of adaptively coupled Kuramoto oscillators”, Chaos, Solitons & Fractals, 166 (2023), 112989  crossref
    5. Anastasiia A. Emelianova, Vladimir I. Nekorkin, “The Third Type of Chaos in a System of Adaptively Coupled Phase Oscillators with Higher-Order Interactions”, Mathematics, 11:19 (2023), 4024  crossref
    6. A.A. Emelianova, V.I. Nekorkin, “The influence of nonisochronism on mixed dynamics in a system of two adaptively coupled rotators”, Chaos, Solitons & Fractals, 169 (2023), 113271  crossref
    7. A. J. Maciejewski, M. Przybylska, “Gyrostatic Suslov Problem”, Rus. J. Nonlin. Dyn., 18:4 (2022), 609–627  mathnet  crossref  mathscinet
    8. Gonchenko S.V., “Three Forms of Dynamical Chaos”, Radiophys. Quantum Electron., 63:9-10 (2021), 756–775  crossref  isi  scopus
    9. Emelianova A.A., Nekorkin I V., “Emergence and Synchronization of a Reversible Core in a System of Forced Adaptively Coupled Kuramoto Oscillators”, Chaos, 31:3 (2021), 033102  crossref  mathscinet  isi  scopus
    10. S. V. Gonchenko, A. S. Gonchenko, A. O. Kazakov, “Three Types of Attractors and Mixed Dynamics of Nonholonomic Models of Rigid Body Motion”, Proc. Steklov Inst. Math., 308 (2020), 125–140  mathnet  crossref  crossref  mathscinet  isi  elib
    11. Alexey V. Borisov, Evgeniya A. Mikishanina, “Two Nonholonomic Chaotic Systems. Part I. On the Suslov Problem”, Regul. Chaotic Dyn., 25:3 (2020), 313–322  mathnet  crossref  mathscinet
    12. S. P. Kuznetsov, V. P. Kruglov, A. V. Borisov, “Chaplygin sleigh in the quadratic potential field”, EPL, 132:2 (2020), 20008  crossref  isi  scopus
    13. V. Chigarev, A. Kazakov, A. Pikovsky, “Kantorovich-Rubinstein-Wasserstein distance between overlapping attractor and repeller”, Chaos, 30:7 (2020)  crossref  mathscinet  zmath  isi  scopus
    14. I. A. Bizyaev, I. S. Mamaev, “Dynamics of the nonholonomic Suslov problem under periodic control: unbounded speedup and strange attractors”, J. Phys. A-Math. Theor., 53:18 (2020), 185701  crossref  mathscinet  isi  scopus
    15. A. A. Emelianova, V. I. Nekorkin, “The third type of chaos in a system of two adaptively coupled phase oscillators”, Chaos, 30:5 (2020)  crossref  mathscinet  zmath  isi  scopus
    16. A. Kazakov, “Merger of a Henon-like attractor with a Henon-like repeller in a model of vortex dynamics”, Chaos, 30:1 (2020), 011105  crossref  mathscinet  zmath  isi  scopus
    17. W. Szuminski, M. Przybylska, “Differential galois integrability obstructions for nonlinear three-dimensional differential systems”, Chaos, 30:1 (2020), 013135  crossref  mathscinet  zmath  isi  scopus
    18. Vyacheslav P. Kruglov, Sergey P. Kuznetsov, “Topaj – Pikovsky Involution in the Hamiltonian Lattice of Locally Coupled Oscillators”, Regul. Chaotic Dyn., 24:6 (2019), 725–738  mathnet  crossref  mathscinet
    19. A. O. Kazakov, “On the appearance of mixed dynamics as a result of collision of strange attractors and repellers in reversible systems”, Radiophys. Quantum Electron., 61:8-9 (2019), 650–658  crossref  isi  scopus
    20. Shengda Hu, Manuele Santoprete, “Suslov Problem with the Clebsch–Tisserand Potential”, Regul. Chaotic Dyn., 23:2 (2018), 193–211  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:356
    References:82
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025